
What is Inno Setup?
Inno Setup version 4.0.10 
Copyright (C) 1997-2003 Jordan Russell. All rights reserved. 
Portions Copyright (C) 2000-2003 Martijn Laan. All rights reserved. 
Contacting Me

Inno Setup is a free installer for Windows programs. First introduced in 1997, Inno Setup today rivals and 
even surpasses many commercial installers in feature set and stability. 

Key features: 

· Support for all 32-bit Windows versions in use today -- Windows 95, 98, 2000, XP, Me, NT 4.0. 

· Supports creation of a single EXE to install your program for easy online distribution. Disk spanning is
also supported. 

· Standard Windows 2000/XP-style wizard interface. 

· Customizable setup types, e.g. Full, Minimal, Custom. 

· Complete uninstall capabilities. 

· Installation of files: 
Includes integrated "deflate" file compression (the same compression .zip files use) and also supports
bzip2 compression. The installer has the ability to compare file version info, replace in-use files, use 
shared file counting, register DLL/OCX's and type libraries, and install fonts. 

· Creation of shortcuts anywhere, including in the Start Menu and on the desktop. 

· Creation of registry and .INI entries. 

· Silent install and silent uninstall. 

· Full source code is available (Borland Delphi 2.0-5.0). 

Is it really free of charge, even for commercial use? 

Yes, it may be used completely free of charge, even when deploying commercial applications. 

(Note: "Completely free of charge" must not be confused with "completely free". Inno Setup is copyrighted
software, not public domain software. There are some restrictions on distribution and use; see the 
LICENSE.TXT file for details.) 

$jrsoftware: ishelp/isetup.rtf,v 1.147 2003/11/14 20:44:53 jr Exp $



Documentation Conventions
"Windows 98/NT 4+" This is shorthand for "Windows 98, 2000, XP, NT 4.0, Me, and later." 

"Windows NT" Whenever Windows NT is mentioned, it includes Windows 2000 and XP (which 
are NT 5), unless otherwise indicated. 

monospaced text When you see monospaced text in the documentation, it refers to text you would 
type in a script file. 



Creating Installations
Installations are created by means of scripts, which are ASCII text files with a format somewhat similar 
to .INI files. (No, it's not as complicated as you might be thinking!) 

Scripts have an ".iss" (meaning Inno Setup Script) extension. The script controls every aspect of the 
installation. It specifies which files are to be installed and where, what shortcuts are to be created and 
what they are to be named, and so on. 

Script files are usually edited from inside the Setup Compiler program. After you have finishing writing the 
script, the next and final step is select "Compile" in the Setup Compiler. What this does is create a 
complete, ready-to-run Setup program based on your script. By default, this is created in a directory 
named "Output" under the directory containing the script.

To give you an idea of how this all works, start the Setup Compiler, click File | Open, and select one of the
script files in the Samples subdirectory located under the Inno Setup directory. (It may be helpful to use 
the sample scripts as a template for your own scripts.) 

See also 
Script Format Overview 



Script Format Overview
Inno Setup Scripts are arranged into sections. Each section controls a different aspect of the installation. 
A section is started by specifying the name of the section enclosed in square brackets []. Inside each 
section is any number of entries. 

There are two different types of sections: those such as [Setup] whose entries contain directive names 
and values (in the form Directive=Value), and those such as [Files] whose entries are divided into 
parameters. 

Here is an example: 

[Setup] 
AppName=My Program 

[Files] 
Source: "MYPROG.EXE"; DestDir: "{app}"

Note that it is legal in Inno Setup 3 to specify multiple sections of the same name. 

You can put "comments" in the script (which are ignored by the compiler) by placing a semicolon at the 
beginning of a line. For example: 

; This is a comment. I could put reminders to myself here...
A C-like #include directive is supported, which pulls in lines from a separate file into the script at the 
position of the #include directive. The syntax is: 

#include "filename.txt"
If the filename is not fully qualified, the compiler will look for it in the same directory as the file containing 
the #include directive. The filename may be prefixed by "compiler:", in which case it looks for the file in 
the Compiler directory. 

See also 
Parameters in Sections 
Constants 
[Setup] section 
[Types] section 
[Components] section 
[Tasks] section 
[Dirs] section 
[Files] section 
[Icons] section 
[INI] section 
[InstallDelete] section 
[Languages] section 
[Messages] section 
[LangOptions] section 
[Registry] section 
[Run] section 
[UninstallDelete] section 
[UninstallRun] section 
Pascal Scripting: Introduction 



Parameters in Sections
All of the sections in a script, with the exception of [Setup], [Messages], and [LangOptions], 
contain lines separated into parameters. The following is an example of a [Files] section: 

[Files] 
Source: "MYPROG.EXE"; DestDir: "{app}" 
Source: "MYPROG.HLP"; DestDir: "{app}" 
Source: "README.TXT"; DestDir: "{app}"; Flags: isreadme

Each parameter consists of a name, followed by a colon, and then a value. Unless otherwise noted, 
parameters are optional in that they assume a default value if they are not specified. Multiple parameters 
on a line are separated by semicolons, and can be listed in any order. 

The value of a parameter is traditionally surrounded in double quotes (") when it contains a user-defined 
string, such as a filename. Using quotes is not required, though, but by doing so it makes it possible to 
embed leading and trailing spaces in the value, as well as semicolons and double-quote characters. 

To embed a double-quote character inside a quoted value, use two consecutive double-quote characters. 
For example: 

"This "" contains "" embedded "" quotes"
The Setup Compiler would see that as: 

This " contains " embedded " quotes
If you want the value of a parameter to be a single double-quote character, use four double-quote 
characters: """". The outer two are needed to surround the string in quotes; the inner two are used to 
embed a single double-quote character.



Constants
The majority of the script entries can have constants embedded in them. These are predefined strings 
enclosed in brace characters { }. Setup translates the constants to their literal values, depending on the 
user's choices and system configuration. For example, {win}, as described below, would translate to "C:\
WINDOWS" on most systems. 

A "{" character is treated as the start of the constant. If you want to use that actual character in a place 
where constants are supported, you must use two consecutive "{" characters. 

When a backslash immediately follows a constant, Inno Setup automatically removes the backslash if the 
value of the constant ended in a backslash already. This way if a particular constant pointed to "C:\", 
{constantname}\file will translate to "C:\file" and not "C:\\file". If you want to prevent this from 
happening, enclose the backslash in { } characters, e.g. {app}{\}. 

The following is the list of supported constants. 

Directory Constants 

{app}
The application directory, which the user selects on the Select Destination Directory page of the 
wizard. 
For example: If you used {app}\MYPROG.EXE on an entry and the user selected "C:\MYPROG" as 
the application directory, Setup will translate it to "C:\MYPROG\MYPROG.EXE". 

{win}
The system's Windows directory. 
For example: If you used {win}\MYPROG.INI on an entry and the system's Windows directory is 
"C:\WINDOWS", Setup will translate it to "C:\WINDOWS\MYPROG.INI". 

{sys}
The system's Windows System directory (System32 on Windows NT platforms). 
For example: If you used {sys}\CTL3D32.DLL on an entry and the system's Windows System 
directory is "C:\WINDOWS\SYSTEM", Setup will translate it to "C:\WINDOWS\SYSTEM\
CTL3D32.DLL". 

{src}
The directory in which the Setup files are located. 
For example: If you used {src}\MYPROG.EXE on an entry and the user is installing from "S:\", Setup
will translate it to "S:\MYPROG.EXE". 

{sd}
System Drive. The drive Windows is installed on, typically "C:". On Windows NT platforms, this 
directory constant is equivalent to the SystemDrive environment variable. 

{pf}
Program Files. The path of the system's Program Files directory, typically "C:\Program Files". 

{cf}
Common Files. The path of the system's Common Files directory, typically "C:\Program Files\
Common Files". 

{tmp}
Temporary directory. This is not the value of the user's TEMP environment variable. It is a 
subdirectory of the user's temporary directory which is created at installation startup (with a name like 
"C:\WINDOWS\TEMP\IS-xxxxx.tmp"). All files and subdirectories in this directory are deleted when 
the setup program exits. This is primarily useful for extracting files that are to be executed in the [Run]
section but aren't needed after the installation. 



{fonts}
Fonts directory. Normally named "FONTS" under the Windows directory. 

{dao}
DAO directory. This is equivalent to {cf}\Microsoft Shared\DAO. 

Shell Folder Constants 

Inno Setup supports another set of directory constants, referred to as shell folder constants. They can be 
used in the same way as the other directory constants. 

The "user" constants below refer to the currently logged in user's profile. "common" constants refer to the 
All Users profile. When an installation is run on a Windows NT-platform system by a user without 
administrative privileges, all of the "common" constants are equivalent to the "user" constants. 

Except where otherwise noted, shell folder constants work on all versions of Windows that Inno Setup 
supports, including Windows 95 and NT 4.0. 

* = The "common" form of this constant is equivalent to the "user" form on Windows 9x/Me. 

{group} 
The path to the Start Menu folder, as selected by the user on Setup's Select Start Menu Folder wizard
page. On Windows NT, this folder is always created under the All Users profile unless the user 
installing the application does not have administrative privileges, in which case it is created on the 
user's profile. 

{localappdata} 
The path to the local (nonroaming) Application Data folder. 

{sendto} 
The path to the current user's Send To folder. (There is no common Send To folder.) 

{userappdata} & {commonappdata} 
The path to the Application Data folder. 

{userdesktop} & {commondesktop} * 
The path to the desktop folder. It's recommended that desktop shortcuts be placed in 
{userdesktop}. 

{userdocs} & {commondocs} 
The path to the My Documents folder (or on NT 4.0, the Personal folder). 

{userfavorites} & {commonfavorites} 
The path to the Favorites folder. Usage of these constants requires a MinVersion setting of at least 
"4.1, 4". Currently only Windows 2000, Me, and later support {commonfavorites}; if used on 
previous Windows versions, it will translate to the same directory as {userfavorites}. 

{userprograms} & {commonprograms} * 
The path to the Programs folder on the Start Menu. 

{userstartmenu} & {commonstartmenu} * 
The path to the top level of the Start Menu. 

{userstartup} & {commonstartup} * 
The path to the Startup folder on the Start Menu. 

{usertemplates} & {commontemplates} 
The path to the Templates folder. Currently only Windows 2000, Me, and later support 
{commontemplates}; if used on previous Windows versions, it will translate to the same directory 
as {usertemplates}. 



Other Constants 

{\} 
A backslash character. See the note at the top of this page for an explanation of what the difference 
between using {\} and only a \ is. 

{%NAME|DefaultValue} 
Embeds the value of an environment variable. 

· NAME specifies the name of the environment variable to use. 

· DefaultValue determines the string to embed if the specified variable does not exist on the 
user's system. 

· If you wish to include a comma, vertical bar ("|"), or closing brace ("}") inside the constant, you 
must escape it via "%-encoding." Replace the character with a "%" character, followed by its 
two-digit hex code. A comma is "%2c", a vertical bar is "%7c", and a closing brace is "%7d". If 
you want to include an actual "%" character, use "%25". 

· NAME and DefaultValue may include constants. Note that you do not need to escape the 
closing brace of a constant as described above; that is only necessary when the closing brace 
is used elsewhere.

Examples: 
{%COMSPEC} 
{%PROMPT|$P$G}

{cmd}
The full pathname of the system's standard command interpreter. On Windows NT/2000/XP, this is 
Windows\System32\cmd.exe. On Windows 9x/Me, this is Windows\COMMAND.COM. Note that the 
COMSPEC environment variable is not used when expanding this constant.

{computername} 
The name of the computer the Setup program is running on (as returned by the GetComputerName 
function). 

{drive:Path} 
Extracts and returns the drive letter and colon (e.g. "C:") from the specified path. In the case of a UNC
path, it returns the server and share name (e.g. "\\SERVER\SHARE"). 

· Path specifies the path. 

· If you wish to include a comma, vertical bar ("|"), or closing brace ("}") inside the constant, you 
must escape it via "%-encoding." Replace the character with a "%" character, followed by its 
two-digit hex code. A comma is "%2c", a vertical bar is "%7c", and a closing brace is "%7d". If 
you want to include an actual "%" character, use "%25". 

· Path may include constants. Note that you do not need to escape the closing brace of a 
constant as described above; that is only necessary when the closing brace is used elsewhere.

Examples: 
{drive:{src}} 
{drive:c:\path\file} 
{drive:\\server\share\path\file}

{groupname} 
The name of the folder the user selected on Setup's Select Start Menu Folder wizard page. This 
differs from {group} in that it is only the name; it does not include a path. 

{hwnd} 
(Special-purpose) Translates to the window handle of the Setup program's background window. 



{wizardhwnd} 
(Special-purpose) Translates to the window handle of the Setup wizard window. This handle is set to 
'0' if the wizard window handle isn't available at the time the translation is done. 

{ini:Filename,Section,Key|DefaultValue} 
Embeds a value from an .INI file. 

· Filename specifies the name of the .INI file to read from. 

· Section specifies the name of the section to read from. 

· Key specifies the name of the key to read. 

· DefaultValue determines the string to embed if the specified key does not exist. 

· If you wish to include a comma, vertical bar ("|"), or closing brace ("}") inside the constant, you 
must escape it via "%-encoding." Replace the character with a "%" character, followed by its 
two-digit hex code. A comma is "%2c", a vertical bar is "%7c", and a closing brace is "%7d". If 
you want to include an actual "%" character, use "%25". 

· Filename, Section, and Key may include constants. Note that you do not need to escape the 
closing brace of a constant as described above; that is only necessary when the closing brace 
is used elsewhere.

Example: 
{ini:{win}\MyProg.ini,Settings,Path|{pf}\My Program}

{language} 
The internal name of the selected language. See the [Languages] section documentation for more 
information. 

{reg:HKxx\SubkeyName,ValueName|DefaultValue} 
Embeds a registry value. 

· HKxx specifies the root key; see the [Registry] section documentation for a list of possible root 
keys. 

· SubkeyName specifies the name of the subkey to read from. 

· ValueName specifies the name of the value to read; leave ValueName blank if you wish to 
read the "default" value of a key. 

· DefaultValue determines the string to embed if the specified registry value does not exist, or is 
not a string type (REG_SZ or REG_EXPAND_SZ). 

· If you wish to include a comma, vertical bar ("|"), or closing brace ("}") inside the constant, you 
must escape it via "%-encoding." Replace the character with a "%" character, followed by its 
two-digit hex code. A comma is "%2c", a vertical bar is "%7c", and a closing brace is "%7d". If 
you want to include an actual "%" character, use "%25". 

· SubkeyName, ValueName, and DefaultValue may include constants. Note that you do not 
need to escape the closing brace of a constant as described above; that is only necessary 
when the closing brace is used elsewhere.

Example: 
{reg:HKLM\Software\My Program,Path|{pf}\My Program}

{param:ParamName|DefaultValue} 
Embeds a command line parameter value. 

· ParamName specifies the name of the command line parameter to read from. 

· DefaultValue determines the string to embed if the specified command line parameter does not
exist, or its value could not be determined. 



· If you wish to include a comma, vertical bar ("|"), or closing brace ("}") inside the constant, you 
must escape it via "%-encoding." Replace the character with a "%" character, followed by its 
two-digit hex code. A comma is "%2c", a vertical bar is "%7c", and a closing brace is "%7d". If 
you want to include an actual "%" character, use "%25". 

· ParamName and DefaultValue may include constants. Note that you do not need to escape 
the closing brace of a constant as described above; that is only necessary when the closing 
brace is used elsewhere.

Example: 
{param:Path|{pf}\My Program} 

The example above translates to c:\My Program if the command line "/Path=c:\My 
Program" was specified.

{srcexe}
The full pathname of the Setup program file, e.g. "C:\SETUP.EXE". 

{sysuserinfoname}
{sysuserinfoorg}
The name and organization, respectively, that Windows is registered to. This information is read from 
the registry. 

{uninstallexe}
The full pathname of the uninstall program extracted by Setup, e.g. "C:\Program Files\My Program\
unins000.exe". This constant is typically used in an [Icons] section entry for creating an Uninstall icon.
It is only valid if Uninstallable is yes (the default setting). 

{userinfoname}
{userinfoorg}
{userinfoserial}
The name, organization and serial number, respectively, that the user entered on the User Information
wizard page (which can be enabled via the UserInfoPage directive). Typically, these constants are 
used in [Registry] or [INI] entries to save their values for later use. 

{username} 
The name of the user who is running Setup program (as returned by the GetUserName function). 



Common Parameters
There are three optional parameters that are supported by all sections whose entries are separated into 
parameters. They are: 

Languages 

Description: 
A space separated list of language names, telling Setup to which languages the entry belongs. If the 
end user selects a language from this list, the entry is processed (for example: the file is installed). 

An entry without a Languages parameter is always installed, unless other parameters say it shouldn't.

Example: 
Languages: en nl 

MinVersion 

Description: 
A minimum Windows version and Windows NT version respectively for the entry to be processed. If 
you use "0" for one of the versions then the entry will never be processed on that platform. Build 
numbers and/or service pack levels may be included in the version numbers. This overrides any 
MinVersion directive in the script's [Setup] section. 

An entry without a MinVersion parameter is always installed, unless other parameters say it shouldn't.

Example: 
MinVersion: 4.0,4.0 

OnlyBelowVersion 

Description: 
Basically the opposite of MinVersion. Specifies the minimum Windows and Windows NT version for
the entry not to be processed. For example, if you put 4.1,5.0 and the user is running Windows 95 
or NT 4.0 the entry will be processed, but if the user is running Windows 98 (which reports its version 
as 4.1) or Windows 2000 (which reports its version as NT 5.0), it will not be processed. Putting "0" for 
one of the versions means there is no upper version limit. Build numbers and/or service pack levels 
may be included in the version numbers. This overrides any OnlyBelowVersion directive in the 
script's [Setup] section. 

An entry without an OnlyBelowVersion parameter is always installed, unless other parameters say it 
shouldn't. 

Example: 
OnlyBelowVersion: 4.1,5.0 



Components and Tasks Parameters
There are two optional parameters that are supported by all sections whose entries are separated into 
parameters, except [Types], [Components] and [Tasks]. They are: 

Components 

Description: 
A space separated list of component names, telling Setup to which components the entry belongs. If 
the end user selects a component from this list, the entry is processed (for example: the file is 
installed). 

An entry without a Components parameter is always installed, unless other parameters say it 
shouldn't. 

Example: 
[Files] 
Source: "MYPROG.EXE"; DestDir: "{app}"; Components: main 
Source: "MYPROG.HLP"; DestDir: "{app}"; Components: help 
Source: "README.TXT"; DestDir: "{app}"

Tasks 

Description: 
A space separated list of task names, telling Setup to which task the entry belongs. If the end user 
selects a task from this list, the entry is processed (for example: the file is installed). 

An entry without a Tasks parameter is always installed, unless other parameters say it shouldn't. 

The Don't create any icons checkbox doesn't control [Icons] entries that have a Task parameter since 
these have their own checkboxes. Therefore Setup will change the Don't create any icons text to 
Don't create a Start Menu folder if you have any icons with a Task parameter. 

Example: 
[Icons] 
Name: "{group}\My Program"; Filename: "{app}\MyProg.exe"; Components: main;
Tasks: startmenu 
Name: "{group}\My Program Help"; Filename: "{app}\MyProg.hlp"; Components: 
help; Tasks: startmenu 
Name: "{userdesktop}\My Program"; Filename: "{app}\MyProg.exe"; Components:
main; Tasks: desktopicon



[Setup] section
This section contains global settings used by the installer and uninstaller. Certain directives are required 
for any installation you create. Here is an example of a [Setup] section: 

[Setup] 
AppName=My Program 
AppVerName=My Program version 1.4 
DefaultDirName={pf}\My Program 
DefaultGroupName=My Program

The following directives can be placed in the [Setup] section: 

(bold = required) 

Compiler-related 

· Compression
· DiskClusterSize
· DiskSliceSize
· DiskSpanning
· DontMergeDuplicateFiles
· InternalCompressLevel
· OutputBaseFilename
· OutputDir
· ReserveBytes
· SlicesPerDisk
· SolidCompression
· SourceDir
· UseSetupLdr

Installer-related 

Functional: These directives affect the operation of the Setup program, or are saved and used later by 
the uninstaller. 

· AllowCancelDuringInstall
· AllowNoIcons
· AllowRootDirectory
· AllowUNCPath
· AlwaysRestart
· AlwaysShowComponentsList
· AlwaysShowDirOnReadyPage
· AlwaysShowGroupOnReadyPage
· AlwaysUsePersonalGroup
· AppName 
· AppId
· AppMutex
· AppPublisher
· AppPublisherURL
· AppSupportURL
· AppUpdatesURL
· AppVersion
· AppVerName 
· ChangesAssociations



· CreateAppDir
· CreateUninstallRegKey
· DefaultDirName 
· DefaultGroupName
· DefaultUserInfoName
· DefaultUserInfoOrg
· DefaultUserInfoSerial
· DirExistsWarning
· DisableAppendDir
· DisableDirPage
· DisableFinishedPage
· DisableProgramGroupPage
· DisableReadyMemo
· DisableReadyPage
· DisableStartupPrompt
· EnableDirDoesntExistWarning
· ExtraDiskSpaceRequired
· InfoAfterFile
· InfoBeforeFile
· LanguageDetectionMethod
· LicenseFile
· MinVersion
· OnlyBelowVersion
· Password
· PrivilegesRequired
· RestartIfNeededByRun
· ShowLanguageDialog
· TimeStampsInUTC
· Uninstallable
· UninstallDisplayIcon
· UninstallDisplayName
· UninstallFilesDir
· UninstallLogMode
· UninstallRestartComputer
· UpdateUninstallLogAppName
· UsePreviousAppDir
· UsePreviousGroup
· UsePreviousSetupType
· UsePreviousTasks
· UsePreviousUserInfo
· UserInfoPage

Cosmetic: These directives are used only for display purposes in the Setup program. 

· AppCopyright
· BackColor
· BackColor2
· BackColorDirection
· BackSolid
· FlatComponentsList
· ShowComponentSizes
· ShowTasksTreeLines
· UninstallStyle
· WindowShowCaption
· WindowStartMaximized
· WindowResizable



· WindowVisible
· WizardImageBackColor
· WizardImageFile
· WizardSmallImageBackColor
· WizardSmallImageFile

Obsolete 

· AdminPrivilegesRequired
· AlwaysCreateUninstallIcon
· Bits
· CompressLevel
· DisableDirExistsWarning
· MessagesFile
· OverwriteUninstRegEntries
· UninstallIconName
· WizardStyle



[Types] section
This section is optional. It defines all of the setup types Setup will show on the Select Components page 
of the wizard. During compilation a set of default setup types is created if you define components in a 
[Components] section but don't define types. If you are using the default (English) messages file, these 
types are the same as the types in the example below. 

Here is an example of a [Types] section: 

[Types] 
Name: "full"; Description: "Full installation" 
Name: "compact"; Description: "Compact installation" 
Name: "custom"; Description: "Custom installation"; Flags: iscustom

The following is a list of the supported parameters: 

Name    (Required) 

Description: 
The internal name of the type. Used as parameter for components in the [Components] section to 
instruct Setup to which types a component belongs. 

Example: 
Name: "full" 

Description    (Required) 

Description: 
The description of the type, which can include constants. This description is shown during installation.

Example: 
Description: "Full installation" 

Flags 

Description: 
This parameter is a set of extra options. Multiple options may be used by separating them by spaces. 
The following options are supported: 

iscustom 
Instructs Setup that the type is a custom type. Whenever the end user manually changes the 
components selection during installation, Setup will set the setup type to the custom type. Note 
that if you don't define a custom type, Setup will only allow the user to choose a setup type and 
he/she can no longer manually select/unselect components. 

Example: 
Flags: iscustom 

Common Parameters



[Components] section
This section is optional. It defines all of the components Setup will show on the Select Components page 
of the wizard for setup type customization. 

By itself a component does nothing: it needs to be 'linked' to other installation entries. See Components 
and Tasks Parameters. 

Here is an example of a [Components] section: 

[Components] 
Name: "main"; Description: "Main Files"; Types: full compact; Flags: fixed 
Name: "help"; Description: "Help Files"; Types: full 
Name: "help\english"; Description: "English"; Types: full 
Name: "help\dutch"; Description: "Dutch"; Types: full

The example above generates four components: A "main" component which gets installed if the end user 
selects a type with name "full" or "compact" and a "help" component which has two child components and
only gets installed if the end user selects the "full" type. 

The following is a list of the supported parameters: 

Name    (Required) 

Description: 
The internal name of the component. 

The total number of \ or / characters in the name of the component is called the level of the 
component. Any component with a level of 1 or more is a child component. The component listed 
before the child component with a level of 1 less than the child component, is the parent component. 
Other components with the same parent component as the child component are sibling components. 

A child component can't be selected if its parent component isn't selected. A parent component can't 
be selected if none of it child components are selected and it doesn't install anything itself. 

If sibling components have the exclusive flag, only one of them can be selected.

Example: 
Name: "help" 

Description    (Required) 

Description: 
The description of the component, which can include constants. This description is shown to the end 
user during installation. 

Example: 
Description: "Help Files" 

Types 

Description: 
A space separated list of types this component belongs to. If the end user selects a type from this list, 
this component will be installed. 

If the fixed flag isn't used (see below), any custom types (types using the iscustom flag) in this list 
are ignored by Setup. 

Example: 
Types: full compact 

ExtraDiskSpaceRequired 

Description: 



The extra disk space required by this component, similar to the ExtraDiskSpaceRequired directive for 
the [Setup] section. 

Example: 
ExtraDiskSpaceRequired: 0 

Flags 

Description: 
This parameter is a set of extra options. Multiple options may be used by separating them by spaces. 
The following options are supported: 

exclusive 
Instructs Setup that this component is mutually exclusive with sibling components that also have 
the exclusive flag. 

fixed 
Instructs Setup that this component can not be manually selected or unselected by the end user 
during installation. 

restart 
Instructs Setup to ask the user to restart the system if this component is installed, regardless of 
whether this is necessary (for example because of [Files] section entries with the 
restartreplace flag). Like AlwaysRestart but per component. 

disablenouninstallwarning 
Instructs Setup not to warn the user that this component will not be uninstalled after he/she 
deselected this component when it's already installed on his/her machine. 

Depending on the complexity of your components, you can try to use the [InstallDelete] section 
and this flag to automatically 'uninstall' deselected components. 

Example: 
Flags: fixed 

Common Parameters



[Tasks] section
This section is optional. It defines all of the user-customizable tasks Setup will perform during installation. 
These tasks appear as check boxes and radio buttons on the Select Additional Tasks wizard page. 

By itself a task does nothing: it needs to be 'linked' to other installation entries. See Components and 
Tasks Parameters. 

Here is an example of a [Tasks] section: 

[Tasks] 
Name: desktopicon; Description: "Create a &desktop icon"; GroupDescription:
"Additional icons:"; Components: main 
Name: desktopicon\common; Description: "For all users"; GroupDescription: 
"Additional icons:"; Components: main; Flags: exclusive 
Name: desktopicon\user; Description: "For the current user only"; 
GroupDescription: "Additional icons:"; Components: main; Flags: exclusive 
unchecked 
Name: quicklaunchicon; Description: "Create a &Quick Launch icon"; 
GroupDescription: "Additional icons:"; Components: main; Flags: unchecked 
Name: associate; Description: "&Associate files"; GroupDescription: "Other 
tasks:"; Flags: unchecked

The following is a list of the supported parameters: 

Name    (Required) 

Description: 
The internal name of the task. 

The total number of \ or / characters in the name of the task is called the level of the task. Any task 
with a level of 1 or more is a child task. The task listed before the child task with a level of 1 less than 
the child task, is the parent task. Other tasks with the same parent task as the child task are sibling 
tasks. 

A child task can't be selected if its parent task isn't selected. A parent task can't be selected if none of 
it child tasks are selected and it doesn't install anything itself. 

If sibling tasks have the exclusive flag, only one of them can be selected.

Example: 
Name: "desktopicon" 

Description    (Required) 

Description: 
The description of the task, which can include constants. This description is shown to the end user 
during installation. 

Example: 
Description: "Create a &desktop icon" 

GroupDescription 

Description: 
The group description of a group of tasks, which can include constants. Consecutive tasks with the 
same group description will be grouped below a text label. The text label shows the group description.

Example: 
GroupDescription: "Additional icons" 

Components 



Description: 
A space separated list of components this task belongs to. If the end user selects a component from 
this list, this task will be shown. A task entry without a Components parameter is always shown. 

Example: 
Components: main 

Flags 

Description: 
This parameter is a set of extra options. Multiple options may be used by separating them by spaces. 
The following options are supported: 

checkedonce 
Instructs Setup that this task should be unchecked initially when Setup finds a previous version of
the same application is already installed. This flag cannot be combined with the unchecked flag. 

If the UsePreviousTasks [Setup] section directive is no, this flag is effectively disabled. 

exclusive 
Instructs Setup that this task is mutually exclusive with sibling tasks that also have the 
exclusive flag. 

restart 
Instructs Setup to ask the user to restart the system at the end of installation if this task is 
selected, regardless of whether it is necessary (for example because of [Files] section entries 
with the restartreplace flag). Like AlwaysRestart but per task. 

unchecked 
Instructs Setup that this task should be unchecked initially. This flag cannot be combined with the 
checkedonce flag.    

Example: 
Flags: unchecked 

Common Parameters



[Dirs] section
This optional section defines any additional directories Setup is to create besides the application directory
the user chooses, which is created automatically. Creating subdirectories off the main application 
directory is a common use for this section. 

Note that you aren't required to explicitly create directories before installing files to them using the [Files] 
section, so this section is primarily useful for creating empty directories. 

Here is an example of a [Dirs] section: 

[Dirs] 
Name: "{app}\data" 
Name: "{app}\bin"

The example above will, after Setup creates the application directory, create two subdirectories off the 
application directory. 

The following is a list of the supported parameters: 

Name    (Required) 

Description: 
The name of the directory to create, which normally will start with one of the directory constants. 

Example: 
Name: "{app}\MyDir" 

Attribs 

Description: 
Specifies additional attributes for the directory. This can include one or more of the following: 
readonly, hidden, system. If this parameter is not specified, Setup does not assign any special 
attributes to the directory. 

If the directory already exists, the specified attributes will be combined with the directory's existing 
attributes. 

Example: 
Attribs: hidden system 

Flags 

Description: 
This parameter is a set of extra options. Multiple options may be used by separating them by spaces. 
The following options are supported: 

deleteafterinstall 
Instructs Setup to create the directory as usual, but then delete it once the installation is 
completed (or aborted) if it's empty. This can be useful when extracting temporary data needed by
a program executed in the script's [Run] section. 

This flag will not cause directories that already existed before installation to be deleted. 

uninsalwaysuninstall 
Instructs the uninstaller to always attempt to delete the directory if it's empty. Normally the 
uninstaller will only try to delete the directory if it didn't already exist prior to installation. 

uninsneveruninstall 
Instructs the uninstaller to not attempt to delete the directory. By default, the uninstaller deletes 
any directory specified in the [Dirs] section if it is empty. 

Example: 
Flags: uninsneveruninstall 



Components and Tasks Parameters 

Common Parameters



[Files] section
This optional section defines any files Setup is to install on the user's system. 

Here is an example of a [Files] section: 

[Files] 
Source: "CTL3DV2.DLL"; DestDir: "{sys}"; Flags: onlyifdoesntexist 
uninsneveruninstall 
Source: "MYPROG.EXE"; DestDir: "{app}" 
Source: "MYPROG.HLP"; DestDir: "{app}" 
Source: "README.TXT"; DestDir: "{app}"; Flags: isreadme

See the Remarks section at the bottom of this topic for some important notes. 

The following is a list of the supported parameters: 

Source    (Required) 

Description: 
The name of the source file. The compiler will prepend the path of your installation's source directory 
if you do not specify a fully qualified pathname. 

This can be a wildcard to specify a group of files in a single entry. When a wildcard is used, all files 
matching it use the same options. 

When the flag external is specified, Source must be the full pathname of an existing file (or 
wildcard) on the distribution media or the user's system (e.g. "{src}\license.ini"). 

Constants may only be used when the external flag is specified, because the compiler does not do 
any constant translating itself. 

Examples: 
Source: "MYPROG.EXE" 
Source: "Files\*" 

DestDir    (Required) 

Description: 
The directory where the file is to be installed on the user's system. The will almost always begin with 
one of the directory constants. If the specified path does not already exist on the user's system, it will 
be created automatically, and removed automatically during uninstallation if empty. 

Examples: 
DestDir: "{app}" 
DestDir: "{app}\subdir" 

DestName 

Description: 
This parameter specifies a new name for the file when it is installed on the user's system. By default, 
Setup uses the name from the Source parameter, so in most cases it's not necessary to specify this 
parameter. 

Example: 
DestName: "MYPROG2.EXE" 

CopyMode 

Description: 
You should not use this parameter in any new scripts. This parameter was deprecated and replaced 
by flags in Inno Setup 3.0.5: 



CopyMode: normal -> Flags: promptifolder 
CopyMode: alwaysskipifsameorolder -> no flags 
CopyMode: onlyifdoesntexist -> Flags: onlyifdoesntexist 
CopyMode: alwaysoverwrite -> Flags: ignoreversion 
CopyMode: dontcopy -> Flags: dontcopy 

What was CopyMode: alwaysskipifsameorolder is now the default behavior. (The previous 
default was CopyMode: normal.) 

Attribs 

Description: 
Specifies additional attributes for the file. This can include one or more of the following: readonly, 
hidden, system. If this parameter is not specified, Setup does not assign any special attributes to 
the file. 

Example: 
Attribs: hidden system 

FontInstall 

Description: 
Tells Setup the file is a font that needs to be installed. The value of this parameter is the name of the 
font as stored in the registry or WIN.INI. This must be exactly the same name as you see when you 
double-click the font file in Explorer. Note that Setup will automatically append " (TrueType)" to the 
end of the name. 

If the file is not a TrueType font, you must specify the flag fontisnttruetype in the Flags 
parameter. 

It's recommended that you use the flags onlyifdoesntexist and uninsneveruninstall when 
installing fonts to the {fonts} directory. 

To successfully install a font on Windows 2000/XP, the user must be a member of the Power Users or 
Administrators groups. On Windows NT 4.0 and earlier, anyone can install a font. 

Example: 
Source: "OZHANDIN.TTF"; DestDir: "{fonts}"; FontInstall: "Oz Handicraft 
BT"; Flags: onlyifdoesntexist uninsneveruninstall 

Flags 

Description: 
This parameter is a set of extra options. Multiple options may be used by separating them by spaces. 
The following options are supported: 

allowunsafefiles 
Disables the compiler's automatic checking for unsafe files. It is strongly recommended that you 
DO NOT use this flag, unless you are absolutely sure you know what you're doing. 

comparetimestamp 
(Not recommended; see below) 
Instructs Setup to proceed to comparing time stamps if the file being installed already exists on 
the user's system, and at least one of the following conditions is true: 

1. The existing file and the file being installed have the same version number (as 
determined by the files' version info). 

2. Neither the existing file nor the file being installed has version info. 

3. The ignoreversion flag is also used on the entry. 

If the existing file has an older time stamp than the file being installed, the existing file will 



replaced. Otherwise, it will not be replaced. 

Use of this flag is not recommended except as a last resort, because there are at least two issues
that may affect you. First, NTFS partitions store time stamps in UTC (unlike FAT partitions), which
causes local time stamps -- what Inno Setup works with -- to shift whenever a user changes their 
system's time zone or when daylight saving time goes into or out of effect. This can create a 
situation where files are replaced when the user doesn't expect them to be, or not replaced when 
the user expects them to be. A separate problem, but one with a similar outcome, can occur if an 
installation was compiled on an NTFS partition and the files are installed to a FAT partition, 
because on FAT partitions time stamps only have a 2-second resolution. 

confirmoverwrite 
Always ask the user to confirm before replacing an existing file. 

deleteafterinstall 
Instructs Setup to install the file as usual, but then delete it once the installation is completed (or 
aborted). This can be useful for extracting temporary data needed by a program executed in the 
script's [Run] section. 

This flag will not cause existing files that weren't replaced during installation to be deleted. 

This flag cannot be combined with the isreadme, regserver, regtypelib, 
restartreplace, sharedfile, or uninsneveruninstall flags. 

dontcopy 
Don't copy the file to the user's system. This flag is useful if the file is handled by the [Code] 
section exclusively. 

external 
This flag instructs Inno Setup not to statically compile the file specified by the Source parameter 
into the installation files, but instead copy from an existing file on the distribution media or the 
user's system. See the Source parameter description for more information. 

fontisnttruetype 
Specify this flag if the entry is installing a non-TrueType font with the FontInstall parameter. 

ignoreversion 
Don't compare version info at all; replace existing files regardless of their version number. 

This flag should only be used on files private to your application, never on shared system files. 

isreadme 
File is the "README" file. Only one file in an installation can have this flag. When a file has this 
flag, the user will asked if he/she would like to view the README file after the installation has 
completed. If Yes is chosen, Setup will open the file, using the default program for the file type. 
For this reason, the README file should always end with an extension like .txt, .wri, or .doc. 

Note that if Setup has to restart the user's computer (as a result of installing a file with the flag 
restartreplace or if the AlwaysRestart [Setup] section directive is yes), the user will not 
be given an option to view the README file. 

noregerror 
When combined with either the regserver or regtypelib flags, Setup will not display any 
error message if the registration fails. 

onlyifdestfileexists 
Only install the file if a file of the same name already exists on the user's system. This flag may 
be useful if your installation is a patch to an existing installation, and you don't want files to be 
installed that the user didn't already have. 

onlyifdoesntexist 
Only install the file if it doesn't already exist on the user's system. 



overwritereadonly 
Always overwrite a read-only file. Without this flag, Setup will ask the user if an existing read-only 
file should be overwritten. 

promptifolder 
By default, when a file being installed has an older version number (or older time stamp, when the
comparetimestamp flag is used) than an existing file, Setup will not replace the existing file. 
(See the Remarks section at the bottom of this topic for more details.) When this flag is used, 
Setup will ask the user whether the file should be replaced, with the default answer being to keep 
the existing file. 

recursesubdirs 
Instructs the compiler to also search for the Source filename/wildcard in subdirectories under the
Source directory. This flag cannot be combined with the external flag. 

regserver 
Register the OLE server (a.k.a. ActiveX control). With this flag set, Setup will locate and execute 
the DLL/OCX's DllRegisterServer export. The uninstaller calls DllUnregisterServer. When used in 
combination with sharedfile, the DLL/OCX will only be unregistered when the reference count 
reaches zero. 

See the Remarks at the bottom of this topic for more information. 

regtypelib 
Register the type library (.tlb). The uninstaller will unregister the type library (unless the flag 
uninsneveruninstall is specified). As with the regserver flag, when used in combination 
with sharedfile, the file will only be unregistered by the uninstaller when the reference count 
reaches zero. 

See the Remarks at the bottom of this topic for more information. 

restartreplace 
This flag is generally useful when replacing core system files. If the file existed beforehand and 
was found to be locked resulting in Setup being unable to replace it, Setup will register the file 
(either in WININIT.INI or by using MoveFileEx, for Windows and Windows NT respectively) to be 
replaced the next time the system is restarted. When this happens, the user will be prompted to 
restart the computer at the end of the installation process. 

To maintain compatibility with Windows 95/98 and Me, long filenames should not be used on an 
entry with this flag. Only "8.3" filenames are supported. (Windows NT platforms do not have this 
limitation.) 

IMPORTANT: The restartreplace flag will only successfully replace an in-use file on Windows NT 
platforms if the user has administrative privileges. If the user does not have administrative 
privileges, this message will be displayed: "RestartReplace failed: MoveFileEx failed; code 5." 
Therefore, when using restartreplace it is highly recommended that you have your installation 
require administrative privileges by setting "PrivilegesRequired=admin" in the [Setup] section. 

sharedfile 
Uses Windows' shared file counting feature (located in the registry at HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs). This enables a file to be shared 
between applications, without worrying about it being inadvertently removed. Each time the file is 
installed, the reference count for the file is incremented. When an application using the file is 
uninstalled, the reference count is decremented. If the count reaches zero, the file is deleted (with
the user's confirmation). 

Most files installed to the Windows System directory should use this flag, including .OCX 
and .DPL (Delphi 3 package) files. One of the few exceptions is MFC DLLs, which should not use 
this flag. Instead, the flags onlyifdoesntexist and uninsneveruninstall should be used.
Or if installing the latest version of a particular MFC DLL is an issue, use the flags 



uninsneveruninstall and restartreplace. 

skipifsourcedoesntexist 
This flag only has an effect when the external flag is also used. It instructs the installer to 
silently skip over the entry if the source file does not exist, instead of displaying an error 
message. 

uninsremovereadonly 
When uninstalling the file, remove any read-only attribute from the file before attempting to delete 
it. 

uninsrestartdelete 
When this flag is used and the file is in use at uninstall time, the uninstaller will queue the file to 
be deleted when the system is restarted, and at the end of the uninstallation process ask the user
if he/she wants to restart. This flag can be useful when uninstalling things like shell extensions 
which cannot be programmatically stopped. Note that administrative privileges are required on 
Windows NT/2000/XP for this flag to have an effect. 

uninsneveruninstall 
Never uninstall this file. This flag should be used sparingly, and is usually used in combination 
with the onlyifdoesntexist flag. It is meant to be used when installing a very common shared
file, such as CTL3DV2.DLL or an MFC DLL, because you wouldn't want the uninstaller to delete 
the file since other applications make use of it also. 

Example: 
Flags: isreadme 

Components and Tasks Parameters 

Common Parameters

Remarks 

If a file already exists on the user's system, it by default will be replaced according to the following rules: 

1. If the existing file is an older version than the file being installed (as determined by the files' 
version info), the existing file will be replaced. 

2. If the existing file is the same version as the file being installed, the existing file will not be 
replaced. 

3. If the existing file is a newer version than the file being installed, or if the existing file has version 
info but the file being installed does not, the existing file will not be replaced. 

4. If the existing file does not have version info, it will be replaced.

Certain flags such as onlyifdoesntexist, ignoreversion, and promptifolder alter the 
aforementioned rules. 

Setup registers all files with the regserver or regtypelib flags as the last step of installation. 
However, if the [Setup] section directive AlwaysRestart is yes, or if there are files with the 
restartreplace flag, all files get registered on the next reboot (by creating an entry in Windows' 
RunOnce registry key). 

When files with a .HLP extension (Windows help files) are uninstalled, the corresponding .GID and .FTS 
files are automatically deleted as well.



[Icons] section
This optional section defines any shortcuts Setup is to create in the Start Menu and/or other locations, 
such as the desktop. 

Here is an example of an [Icons] section: 

[Icons] 
Name: "{group}\My Program"; Filename: "{app}\MYPROG.EXE"; WorkingDir: 
"{app}" 
Name: "{group}\Uninstall My Program"; Filename: "{uninstallexe}"

The following is a list of the supported parameters: 

Name    (Required) 

Description: 
The name and location of the shortcut to create. Any of the shell folder constants or directory 
constants may be used in this parameter. 

Keep in mind that shortcuts are stored as literal files so any characters not allowed in normal 
filenames can't be used here. Also, because it's not possible to have two files with the same name, it's
therefore not possible to have two shortcuts with the same name. 

Examples: 
Name: "{group}\My Program" 
Name: "{group}\Subfolder\My Program" 
Name: "{userdesktop}\My Program" 
Name: "{commonprograms}\My Program" 
Name: "{commonstartup}\My Program" 

Filename    (Required) 

Description: 
The command line filename for the shortcut, which normally begins with a directory constant. 

Examples: 
Filename: "{app}\MYPROG.EXE" 
Filename: "{uninstallexe}" 

Parameters 

Description: 
Optional command line parameters for the shortcut, which can include constants. 

Example: 
Parameters: "/play filename.mid" 

WorkingDir 

Description: 
The working (or Start In) directory for the shortcut, which is the directory in which the program is 
started from. If this parameter is not specified or is blank, Windows will use a default path, which 
varies between the different Windows versions. This parameter can include constants. 

Example: 
WorkingDir: "{app}" 

HotKey 

Description: 
The hot key (or "shortcut key") setting for the shortcut, which is a combination of keys with which the 
program can be started. 



Note: If you change the shortcut key and reinstall the application, Windows may continue to recognize
old shortcut key(s) until you log off and back on or restart the system. 

Example: 
HotKey: "ctrl+alt+k" 

Comment 

Description: 
Specifies the Comment (or "description") field of the shortcut, which determines the popup hint for it in
Windows 2000, Me, and later. Earlier Windows versions ignore the comment. 

Example: 
Comment: "This is my program" 

IconFilename 

Description: 
The filename of a custom icon (located on the user's system) to be displayed. This can be an 
executable image (.exe, .dll) containing icons or a .ico file. If this parameter is not specified or is 
blank, Windows will use the file's default icon. This parameter can include constants. 

Example: 
IconFilename: "{app}\myicon.ico" 

IconIndex 

Default: 
0 

Description: 
Zero-based index of the icon to use in the file specified by IconFilename. 

If IconIndex is non-zero and IconFilename is not specified or is blank, it will act as if 
IconFilename is the same as Filename. 

Example: 
IconIndex: 0 

Flags 

Description: 
This parameter is a set of extra options. Multiple options may be used by separating them by spaces. 
The following options are supported: 

closeonexit 
When this flag is set, Setup will set the "Close on Exit" property of the shortcut. This flag only has 
an effect if the shortcut points to an MS-DOS application (if it has a .pif extension, to be specific). 
If neither this flag nor the dontcloseonexit flags are specified, Setup will not attempt to 
change the "Close on Exit" property. 

createonlyiffileexists 
When this flag is set, the installer will only try to create the icon if the file specified by the 
Filename parameter exists. 

dontcloseonexit 
Same as closeonexit, except it causes Setup to uncheck the "Close on Exit" property. 

runmaximized 
When this flag is set, Setup sets the "Run" setting of the icon to "Maximized" so that the program 
will be initially maximized when it is started. 

runminimized 



When this flag is set, Setup sets the "Run" setting of the icon to "Minimized" so that the program 
will be initially minimized when it is started. 

uninsneveruninstall 
Instructs the uninstaller not to delete the icon. 

useapppaths 
When this flag is set, specify just a filename (no path) in the Filename parameter, and Setup will
retrieve the pathname from the "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\App Paths" registry key and prepend it to the filename automatically. 

Example: 
Flags: runminimized 

Components and Tasks Parameters 

Common Parameters



[INI] section
This optional section defines any .INI file entries you would like Setup to set on the user's system. 

Here is an example of an [INI] section: 

[INI] 
Filename: "{win}\MYPROG.INI"; Section: "InstallSettings"; Flags: 
uninsdeletesection 
Filename: "{win}\MYPROG.INI"; Section: "InstallSettings"; Key: 
"InstallPath"; String: "{app}"

The following is a list of the supported parameters: 

Filename    (Required) 

Description: 
The name of the .INI file you want Setup to modify, which can include constants. If this parameter is 
blank, it writes to WIN.INI in the system's Windows directory. 

Example: 
Filename: "{win}\MYPROG.INI" 

Section    (Required) 

Description: 
The name of the section to create the entry in, which can include constants. 

Example: 
Section: "Settings" 

Key 

Description: 
The name of the key to set, which can include constants. If this parameter is not specified or is blank, 
no key is created.

Example: 
Key: "Version" 

String 

Description: 
The value to assign to the key, which can use constants. If this parameter is not specified, no key is 
created.

Example: 
String: "1.0" 

Flags 

Description: 
This parameter is a set of extra options. Multiple options may be used by separating them by spaces. 
The following options are supported: 

createkeyifdoesntexist 
Assign to the key only if the key name doesn't already exist. 

uninsdeleteentry 
Delete the entry when the program is uninstalled. This can be combined with the 
uninsdeletesectionifempty flag. 

uninsdeletesection 
When the program is uninstalled, delete the entire section in which the entry is located. It 



obviously wouldn't be a good idea to use this on a section that is used by Windows itself (like 
some of the sections in WIN.INI). You should only use this on sections private to your application. 

uninsdeletesectionifempty 
Same as uninsdeletesection, but deletes the section only if there are no keys left in it. This 
can be combined with the uninsdeleteentry flag. 

Example: 
Flags: uninsdeleteentry 

Components and Tasks Parameters 

Common Parameters



[InstallDelete] section
This optional section is identical in format to the [UninstallDelete] section, except its entries are processed
as the first step of installation. 



[Languages] section
Inno Setup supports multilingual installations. The [Languages] section defines the languages to make 
available to the Setup program. 

Setup determines the default language to use for its messages in the following order: 

1. It searches for a language whose LanguageID setting (normally specified in the [LangOptions] 
section of the language's .isl file) matches both the primary language identifier and sublanguage 
identifier of the current user's UI language or locale (depending on the setting of 
LanguageDetectionMethod). 

2. If none is found, it searches for just a primary language identifier match. If two or more available 
languages have the same primary language identifier, it goes with the first one listed in the 
[Languages] section. 

3. If none is found, it defaults to the first language specified in the [Languages] section. 

If the ShowLanguageDialog [Setup] section directive is set to yes (the default), a Select Language dialog 
will be displayed which gives the user an opportunity to override the language Setup chose. 

The following is an example of a [Languages] section. It defines two languages: English, based on the 
standard Default.isl file, and Dutch, based on a third-party translation. 

[Languages] 
Name: "en"; MessagesFile: "compiler:Default.isl" 
Name: "nl"; MessagesFile: "Dutch.isl"

Name    (Required) 

Description: 
The internal name of the language. This can used as a prefix on [LangOptions] or [Messages] section
entries to have the entries apply to only one language. The {language} constant returns the internal 
name of the selected language. 

Example: 
Name: "en" 

MessagesFile    (Required) 

Description: 
Specifies the name(s) of file(s) to read the default messages from. The file(s) must be located in your 
installation's source directory when running the Setup Compiler, unless a fully qualified pathname is 
specified or the pathname is prefixed by "compiler:", in which case it looks for the file in the Compiler 
directory. 

When multiple files are specified, they are read in the order they are specified, thus the last message 
file overrides any messages in previous files. 

See the [Messages] section help topic for details on the format of .isl files. 

Examples: 
MessagesFile: "compiler:Dutch.isl" 
MessagesFile: "compiler:Default.isl,compiler:MyMessages.isl" 

LicenseFile 

Description: 
Specifies the name of an optional license agreement file, in .txt or .rtf (rich text) format, which is 
displayed before the user selects the destination directory for the program. This file must be located in
your installation's source directory when running the Setup Compiler, unless a fully qualified 
pathname is specified or the pathname is prefixed by "compiler:", in which case it looks for the file in 
the Compiler directory. 



Example: 
LicenseFile: "license-Dutch.txt" 

InfoBeforeFile 

Description: 
Specifies the name of an optional "readme" file, in .txt or .rtf (rich text) format, which is displayed 
before the user selects the destination directory for the program. This file must be located in your 
installation's source directory when running the Setup Compiler, unless a fully qualified pathname is 
specified or the pathname is prefixed by "compiler:", in which case it looks for the file in the Compiler 
directory. 

Example: 
InfoBeforeFile: "infobefore-Dutch.txt" 

InfoAfterFile 

Description: 
Specifies the name of an optional "readme" file, in .txt or .rtf (rich text) format, which is displayed after 
a successful install. This file must be located in your installation's source directory when running the 
Setup Compiler, unless a fully qualified pathname is specified or the pathname is prefixed by 
"compiler:", in which case it looks for the file in the Compiler directory. 

This differs from isreadme files in that this text is displayed as a page of the wizard, instead of in a 
separate Notepad window. 

Example: 
InfoAfterFile: "infoafter-Dutch.txt" 



[Messages] section
A [Messages] section is used to define the messages displayed by the Setup program and uninstaller. 
Normally, you need not create a [Messages] section in your script file, since all messages are, by default, 
pulled in from the file Default.isl included with Inno Setup (or whichever file is specified by a [Languages] 
section entry). 

However, particular messages can be overridden by creating a [Messages] section in your script file. To 
do this, first you will need to know the ID of the message you want to change. This can be easily found by
searching Default.isl. For example, say you wanted to change the "&Next >" button on the wizard to read 
"&Forward >". The ID of this message is "ButtonNext", so you would create a [Messages] section like this:

[Messages] 
ButtonNext=&Forward >

Some messages take arguments such as %1 and %2. You can rearrange the order of the arguments (i.e. 
move the %2 before a %1) and also duplicate arguments if needed (i.e. "%1 ... %1 %2"). On messages 
with arguments, use two consecutive "%" characters to embed a single "%". "%n" creates a line break. 

If you wish to translate all of Inno Setup's text to another language, instead of modifying Default.isl or 
overriding each message in every script you create, make a copy of Default.isl with another name like 
MyTranslation.isl. On any installation you wish to use MyTranslation.isl, create a [Languages] section 
entry pointing to the file. 

In cases where there are multiple [Languages] section entries, specifying a [Messages] section entry in 
your script (as opposed to an .isl file) will by default override that message for all languages. To apply a 
[Messages] section entry to only one language, prefix it with the language's internal name followed by a 
period. For example: 

en.ButtonNext=&Forward >

Special-purpose IDs 

The special-purpose BeveledLabel message can be used to specify a line of text that is shown in the 
lower left corner of the wizard window and uninstaller window. The following is an example: 

[Messages] 
BeveledLabel=Inno Setup



[LangOptions] section
A [LangOptions] section is used to define the language-specific settings, such as fonts, used by the Setup
program and uninstaller. Normally, you need not create a [LangOptions] section in your script file, since 
the language-specific settings are, by default, pulled in from the file Default.isl included with Inno Setup 
(or whichever file is specified by a [Languages] section entry). 

The following is an example of a [LangOptions] section. (The settings listed below are the defaults.) 

[LangOptions] 
LanguageName=English 
LanguageID=$0409 
DialogFontName=MS Shell Dlg 
DialogFontSize=8 
DialogFontStandardHeight=13 
TitleFontName=Arial 
TitleFontSize=29 
WelcomeFontName=Verdana 
WelcomeFontSize=12 
CopyrightFontName=Arial 
CopyrightFontSize=8

LanguageName is the name of the language. It is displayed in the list of available languages on the 
Select Language dialog in a multilingual installation. 

LanguageID is the numeric "language identifier" of the language. See 
http://msdn.microsoft.com/library/en-us/intl/nls_238z.asp for a list of valid language identifiers. This is 
used for the purpose of auto-detecting the most appropriate language to use by default, so be sure it is 
set correctly. It should always begin with a "$" sign, since language identifiers are in hexadecimal. 

DialogFontName and DialogFontSize specify the font name and point size to use in dialogs. If the 
specified font does not exist on the user's system, 8-point MS Shell Dlg or MS Sans Serif will be 
substituted (whichever one is found first). 

DialogFontStandardHeight affects how the dialogs are scaled. If you are using a font with a height 
other than 13 pixels (at 96 DPI), you may need to adjust DialogFontStandardHeight, otherwise the 
dialogs may appear inflated or shrunk. 

TitleFontName and TitleFontSize specify the font name and point size to use when displaying the 
application name on the background window (only visible when WindowVisible=yes). If the specified 
font does not exist on the user's system, 29-point Arial will be substituted. 

WelcomeFontName and WelcomeFontSize specify the font name and point size to use at the top of 
Welcome page. If the specified font does not exist on the user's system, 12-point MS Shell Dlg or MS 
Sans Serif will be substituted (whichever one is found first). 

CopyrightFontName and CopyrightFontSize specify the font name and point size to use when 
displaying the AppCopyright message on the background window (only visible when 
WindowVisible=yes). If the specified font does not exist on the user's system, 8-point Arial will be 
substituted. 

In cases where there are multiple [Languages] section entries, specifying a [LangOptions] section 
directive in your script (as opposed to an .isl file) will by default override that directive for all languages. To
apply a [LangOptions] section directive to only one language, prefix it with the language's internal name 
followed by a period. For example: 

en.LanguageName=English





[Registry] section
This optional section defines any registry keys/values you would like Setup to create, modify, or delete on 
the user's system. 

By default, registry keys and values created by Setup are not deleted at uninstall time. If you want the 
uninstaller to delete keys or values, you must include one of the uninsdelete* flags described below. 

The following is an example of a [Registry] section. 

[Registry] 
Root: HKCU; Subkey: "Software\My Company"; Flags: uninsdeletekeyifempty 
Root: HKCU; Subkey: "Software\My Company\My Program"; Flags: uninsdeletekey

Root: HKLM; Subkey: "Software\My Company"; Flags: uninsdeletekeyifempty 
Root: HKLM; Subkey: "Software\My Company\My Program"; Flags: uninsdeletekey

Root: HKLM; Subkey: "Software\My Company\My Program"; ValueType: string; 
ValueName: "InstallPath"; ValueData: "{app}"

The following is a list of the supported parameters: 

Root    (Required) 

Description: 
The root key. This must be one of the following: 

HKCR (HKEY_CLASSES_ROOT) 
HKCU (HKEY_CURRENT_USER) 
HKLM (HKEY_LOCAL_MACHINE) 
HKU (HKEY_USERS) 
HKCC (HKEY_CURRENT_CONFIG) 

Example: 
Root: HKCU 

Subkey    (Required) 

Description: 
The subkey name, which can include constants. 

Example: 
Subkey: "Software\My Company\My Program" 

ValueType 

Description: 
The data type of the value. This must be one of the following: 

none 
string 
expandsz 
multisz 
dword 
binary 

If none (the default setting) is specified, Setup will create the key but not a value. In this case the 
ValueName and ValueData parameters are ignored. 
If string is specified, Setup will create a string (REG_SZ) value. 
If expandsz is specified, Setup will create an expand-string (REG_EXPAND_SZ) value. This data 
type is primarily used on Windows NT, but is supported by Windows 95/98. 



If multisz is specified, Setup will create an multi-string (REG_MULTI_SZ) value. 
If dword is specified, Setup will create an integer (REG_DWORD) value. 
If binary is specified, Setup will create a binary (REG_BINARY) value. 

Example: 
ValueType: string 

ValueName 

Description: 
The name of the value to create, which can include constants. If this is blank, it will write to the 
"Default" value. If the ValueType parameter is set to none, this parameter is ignored. 

Example: 
ValueName: "Version" 

ValueData 

Description: 
The data for the value. If the ValueType parameter is string, expandsz, or multisz, this is a 
string that can include constants. If the data type is dword, this can be a decimal integer (e.g. "123") 
or a hexadecimal integer (e.g. "$7B"). If the data type is binary, this is a sequence of hexadecimal 
bytes in the form: "00 ff 12 34". If the data type is none, this is ignored. 

On a string, expandsz, or multisz type value, you may use a special constant called 
{olddata} in this parameter. {olddata} is replaced with the previous data of the registry value. 
The {olddata} constant can be useful if you need to append a string to an existing value, for 
example, {olddata};{app}. If the value does not exist or the existing value isn't a string type, the 
{olddata} constant is silently removed. {olddata} will also be silently removed if the value being 
created is a multisz type but the existing value is not a multi-string type (i.e. it's REG_SZ or 
REG_EXPAND_SZ), and vice versa. 

On a multisz type value, you may use a special constant called {break} in this parameter to 
embed line breaks (nulls). 

Example: 
ValueData: "1.0" 

Flags 

Description: 
This parameter is a set of extra options. Multiple options may be used by separating them by spaces. 
The following options are supported: 

createvalueifdoesntexist 
When this flag is specified, Setup will create the value only if a value of the same name doesn't 
already exist. This flag has no effect if the data type is none, or if you specify the deletevalue flag.

deletekey 
When this flag is specified, Setup will first try deleting the entire key if it exists, including all values
and subkeys in it. If ValueType is not none, it will then create a new key and value. 

To prevent disasters, this flag is ignored during installation if Subkey is blank or contains only 
backslashes. 

deletevalue 
When this flag is specified, Setup will first try deleting the value if it exists. If ValueType is not 
none, it will then create the key if it didn't already exist, and the new value. 

dontcreatekey 
When this flag is specified, Setup will not attempt to create the key or any value if the key did not 



already exist on the user's system. No error message is displayed if the key does not exist. 

Typically this flag is used in combination with the uninsdeletekey flag, for deleting keys during 
uninstallation but not creating them during installation. 

noerror 
Don't display an error message if Setup fails to create the key or value for any reason. 

preservestringtype 
This is only applicable when the ValueType parameter is string or expandsz. When this flag 
is specified and the value did not already exist or the existing value isn't a string type (REG_SZ or
REG_EXPAND_SZ), it will be created with the type specified by ValueType. If the value did 
exist and is a string type, it will be replaced with the same value type as the pre-existing value. 

uninsclearvalue 
When the program is uninstalled, set the value's data to a null string (type REG_SZ). This flag 
cannot be combined with the uninsdeletekey flag. 

uninsdeletekey 
When the program is uninstalled, delete the entire key, including all values and subkeys in it. It 
obviously wouldn't be a good idea to use this on a key that is used by Windows itself. You should 
only use this on keys private to your application. 

To prevent disasters, this flag is ignored during installation if Subkey is blank or contains only 
backslashes. 

uninsdeletekeyifempty 
When the program is uninstalled, delete the key if it has no values or subkeys left in it. This flag 
can be combined with uninsdeletevalue. 

To prevent disasters, this flag is ignored during installation if Subkey is blank or contains only 
backslashes. 

uninsdeletevalue 
Delete the value when the program is uninstalled. This flag can be combined with 
uninsdeletekeyifempty. 

NOTE: In Inno Setup versions prior to 1.1, you could use this flag along with the data type none 
and it would function as a "delete key if empty" flag. This technique is no longer supported. You 
must now use the uninsdeletekeyifempty flag to accomplish this. 

Example: 
Flags: uninsdeletevalue 

Components and Tasks Parameters 

Common Parameters



[Run] & [UninstallRun] sections
The [Run] section is optional, and specifies any number of programs to execute after the program has 
been successfully installed, but before the Setup program displays the final dialog. The [UninstallRun] 
section is optional as well, and specifies any number of programs to execute as the first step of 
uninstallation. Both sections share an identical syntax, except where otherwise noted below. 

Programs are executed in the order they appear in the script. While processing a [Run]/[UninstallRun] 
entry, Setup/Uninstall will wait until the program has terminated before proceeding to the next one, unless 
the nowait, shellexec, or waituntilidle flags are used. 

Note that by default, if a program executed in the [Run] section queues files to be replaced on the next 
reboot (by calling MoveFileEx or by modifying wininit.ini), Setup will detect this and prompt the user to 
restart the computer at the end of installation. If you don't want this, set the RestartIfNeededByRun 
directive to no. 

The following is an example of a [Run] section. 

[Run] 
Filename: "{app}\INIT.EXE"; Parameters: "/x" 
Filename: "{app}\README.TXT"; Description: "View the README file"; Flags: 
postinstall shellexec skipifsilent 
Filename: "{app}\MYPROG.EXE"; Description: "Launch application"; Flags: 
postinstall nowait skipifsilent unchecked 

The following is a list of the supported parameters: 

Filename    (Required) 

Description: 
The program to execute, or file/folder to open. If Filename is not an executable (.exe or .com) or 
batch file (.bat or .cmd), you must use the shellexec flag on the entry. This parameter can include 
constants. 

Example: 
Filename: "{app}\INIT.EXE" 

Description 

Description: 
Valid only in a [Run] section. The description of the entry, which can include constants. This 
description is used for entries with the postinstall flag. If the description is not specified for an 
entry, Setup will use a default description. This description depends on the type of the entry (normal 
or shellexec). 

Example: 
Description: "View the README file" 

Parameters 

Description: 
Optional command line parameters for the program, which can include constants. 

Example: 
Parameters: "/x" 

WorkingDir 

Description: 
The directory in which the program is started from. If this parameter is not specified or is blank, it uses
the directory from the Filename parameter; if Filename does not include a path, it will use a default
directory. This parameter can include constants. 



Example: 
WorkingDir: "{app}" 

StatusMsg 

Description: 
Valid only in a [Run] section. Determines the message displayed on the wizard while the program is 
executed. If this parameter is not specified or is blank, a default message of "Finishing installation..." 
will be used. This parameter can include constants. 

Example: 
StatusMsg: "Installing BDE..." 

RunOnceId 

Description: 
Valid only in an [UninstallRun] section. If the same application is installed more than once, "run" 
entries will be duplicated in the uninstall log file. By assigning a string to RunOnceId, you can ensure 
that a particular [UninstallRun] entry will only be executed once during uninstallation. For 
example, if two or more "run" entries in the uninstall log have a RunOnceId setting of "DelService", 
only the latest entry with a RunOnceId setting of "DelService" will be executed; the rest will be 
ignored. Note that RunOnceId comparisons are case-sensitive. 

Example: 
RunOnceId: "DelService" 

Flags 

Description: 
This parameter is a set of extra options. Multiple options may be used by separating them by spaces. 
The following options are supported: 

hidewizard 
If this flag is specified, the wizard will be hidden while the program is running. 

nowait 
If this flag is specified, it will not wait for the process to finish executing before proceeding to the 
next [Run] entry, or completing Setup. Cannot be combined with waituntilidle. 

postinstall 
Valid only in an [Run] section. Instructs Setup to create a checkbox on the Setup Completed 
wizard page. The user can uncheck or check this checkbox and thereby choose whether this 
entry should be processed or not. Previously this flag was called showcheckbox. 

If Setup has to restart the user's computer (as a result of installing a file with the flag 
restartreplace or if the AlwaysRestart [Setup] section directive is yes), there will not be
an opportunity for the checkbox to be displayed and therefore the entry will never be processed. 

The isreadme flag for entries in the [Files] section is now obsolete. If the compiler detects a 
entry with an isreadme flag, it strips the isreadme flag from the [Files] entry and inserts a 
generated [Run] entry at the head of the list of [Run] entries. This generated [Run] entry runs the 
README file and has flags shellexec, skipifdoesntexist, postinstall and 
skipifsilent. 

runhidden 
If this flag is specified, it will launch the program in a hidden window. Never use this flag when 
executing a program that may prompt for user input. 

runmaximized 
If this flag is specified, it will launch the program or document in a maximized window. 



runminimized 
If this flag is specified, it will launch the program or document in a minimized window. 

shellexec 
This flag is required if Filename is not a directly executable file (an .exe or .com file). When this 
flag is set, Filename can be a folder or any registered file type -- including .hlp, .doc, and so on. 
The file will be opened with the application associated with the file type on the user's system, the 
same way it would be if the user double-clicked the file in Explorer. 

When using a folder name in Filename it's recommended that you follow it by a backslash 
character (e.g. "{group}\"), to ensure that a program of the same name is not executed. 

There is one drawback to using the shellexec flag: it cannot wait until the process terminates. 
Therefore, it always works as if the nowait flag was specified. 

skipifdoesntexist 
If this flag is specified in the [Run] section, Setup won't display an error message if Filename 
doesn't exist.

If this flag is specified in the [UninstallRun] section, the uninstaller won't display the "some 
elements could not be removed" warning if Filename doesn't exist. 

skipifnotsilent 
Valid only in an [Run] section. Instructs Setup to skip this entry if Setup is not running (very) silent.

skipifsilent 
Valid only in an [Run] section. Instructs Setup to skip this entry if Setup is running (very) silent. 

unchecked 
Valid only in an [Run] section. Instructs Setup to initially uncheck the checkbox. The user can still 
check the checkbox if he/she wishes to process the entry. This flag is ignored if the 
postinstall flag isn't also specified.

waituntilidle 
If this flag is specified, it will pause until the process is waiting for user input with no input 
pending, instead of waiting for the process to terminate. (This calls the WaitForInputIdle Win32 
function.) Cannot be combined with nowait. 

Example: 
Flags: postinstall nowait skipifsilent 

Components and Tasks Parameters 

Common Parameters



[UninstallDelete] section
This optional section defines any additional files or directories you want the uninstaller to delete, besides 
those that were installed/created using [Files] or [Dirs] section entries. Deleting .INI files created by your 
application is one common use for this section. The uninstaller processes these entries as the last step of 
uninstallation. 

Here is a example of a [UninstallDelete] section: 

[UninstallDelete] 
Type: files; Name: "{win}\MYPROG.INI"

The following is a list of the supported parameters: 

Type    (Required) 

Description: 
Specifies what is to be deleted by the uninstaller. This must be one of the following: 

files 
The Name parameter specifies a name of a particular file, or a filename with wildcards. 

filesandordirs 
Functions the same as files except it matches directory names also, and any directories 
matching the name are deleted including all files and subdirectories in them. 

dirifempty 
When this is used, the Name parameter must be the name of a directory, but it cannot include 
wildcards. The directory will only be deleted if it contains no files or subdirectories. 

Example: 
Type: files 

Name    (Required) 

Description: 
Name of the file or directory to delete. 

NOTE: Don't be tempted to use a wildcard here to delete all files in the {app} directory. I strongly 
recommend against doing this for two reasons. First, users usually don't appreciate having their data 
files they put in the application directory deleted without warning (they might only be uninstalling it 
because they want to move it to a different drive, for example). It's better to leave it up to the end 
users to manually remove them if they want. Also, if the user happened to install the program in the 
wrong directory by mistake (for example, C:\WINDOWS) and then went to uninstall it there could be 
disastrous consequences. So again, DON'T DO THIS! 

Example: 
Name: "{win}\MYPROG.INI" 

Components and Tasks Parameters 

Common Parameters



Frequently Asked Questions
The Frequently Asked Questions is now located in a separate document. Please click the "Inno Setup 
FAQ" shortcut created in the Start Menu when you installed Inno Setup, or open the "isfaq.htm" file in your
Inno Setup directory. 

For the most recent Frequently Asked Questions, go to http://www.jrsoftware.org/isfaq.php



Wizard Pages
Below is a list of all the wizard pages Setup may potentially display, and the conditions under which they 
are displayed. 

· Welcome 
Always shown. 

· License Agreement 
Shown if LicenseFile is set. Users may proceed to the next page only if the option "I accept the 
agreement" is selected. 

· Password 
Shown if Password is set. Users may proceed to the next page only after entering the correct 
password. 

· Information 
Shown if InfoBeforeFile is set. 

· User Information 
Shown if UserInfoPage is set to yes. 

· Select Destination Directory 
Shown by default, but can be disabled via DisableDirPage. 

· Select Components 
Shown if there are any [Components] entries. 

· Select Start Menu Folder 
Shown if there are any [Icons] entries, but can be disabled via DisableProgramGroupPage. 

· Select Tasks 
Shown if there are any [Tasks] entries, unless the [Tasks] entries are all tied to components that 
were not selected on the Select Components page. 

· Ready to Install 
Shown by default, but can be disabled via DisableReadyPage. 

· Preparing to Install 
Normally, Setup will never stop on this page. The only time it will is if Setup determines it can't 
continue. Currently, the only time this can happen is if one or more files specified in the [Files] 
section were queued (by some other installation) to be replaced or deleted on the next restart. In 
this case, it tells the user they need to restart their computer and then run Setup again. Note that 
this check is performed on silent installations too, but any messages are displayed in a message 
box instead of inside a wizard page. 

· Installing 
Shown during the actual installation process. 

· Information 
Shown if InfoAfterFile is set. 

· Setup Completed 
Shown by default, but can be disabled in some cases via DisableFinishedPage. 



Installation Order
Once the actual installation process begins, this is the order in which the various installation tasks are 
performed: 

· [InstallDelete] is processed. 

· The entries in [UninstallDelete] are stored in the uninstall log (which, at this stage, is stored in 
memory). 

· The application directory is created, if necessary. 

· [Dirs] is processed. 

· A filename for the uninstall log is reserved, if necessary. 

· [Files] is processed. (File registration does not happen yet.) 

· [Icons] is processed. 

· [INI] is processed. 

· [Registry] is processed. 

· Files that needed to be registered are now registered, unless the system needs to be restarted, in 
which case no files are registered until the system is restarted. 

· The Add/Remove Programs entry for the program is created, if necessary. 

· The entries in [UninstallRun] are stored in the uninstall log. 

· The uninstaller EXE and log are finalized and saved to disk. 

· If ChangesAssociations was set to yes, file associations are refreshed now. 

· [Run] is processed, except for entries with the postinstall flag, which get processed after the 
Setup Completed wizard page is shown. 

All entries are processed by the installer in the order they appear in a section. 

Changes are undone by the uninstaller in the opposite order in which the installer made them. This is 
because the uninstall log is parsed from end to beginning. 

In this example: 

[INI] 
Filename: "{win}\MYPROG.INI"; Section: "InstallSettings"; Flags: 
uninsdeletesectionifempty 
Filename: "{win}\MYPROG.INI"; Section: "InstallSettings"; Key: "InstallPath"; 
String: "{app}"; Flags: uninsdeleteentry
the installer will first record the data for first entry's uninsdeletesectionifempty flag in the uninstall 
log, create the key of the second entry, and then record the data for the uninsdeleteentry flag in the 
uninstall log. When the program is uninstalled, the uninstaller will first process the uninsdeleteentry 
flag, deleting the entry, and then the uninsdeletesectionifempty flag. 



Miscellaneous Notes
· If Setup detects a shared version of Windows on the user's system where the Windows System 

directory is write protected, the {sys} directory constant will translate to the user's Windows directory 
instead of the System directory. 

· To easily auto update your application, first make your application somehow detect a new version of 
your Setup.exe and make it locate or download this new version. Then, to auto update, start your 
Setup.exe from your application with for example the following command line: 

/SP- /silent /noicons "/dir=c:\Program Files\My Program"
After starting setup.exe, exit your application as soon as possible. Note that to avoid problems with 
updating your .exe, Setup has an auto retry feature when it is silent or very silent. 

Optionally you could also use the skipifsilent and skipifnotsilent flags and make your 
application aware of a '/updated' parameter to for example show a nice message box to inform the 
user that the update has completed. 



Command Line Compiler Execution
· Scripts can also be compiled by the Setup Compiler from the command line. Command line usage is 

as follows: 

compiler /cc <script name> 

Example: 

compil32 /cc "c:\isetup\samples\my script.iss" 

As shown in the example above, filenames that include spaces must be enclosed in quotes. 

Running the Setup Compiler from the command line does not suppress the normal progress display 
or any error messages. The Setup Compiler will return an exit code of 0 if the compile was 
successful, 1 if the command line parameters were invalid, or 2 if the compile failed. 

· Alternatively, you can compile scripts using the console-mode compiler, ISCC.exe. 

Example: 

iscc "c:\isetup\samples\my script.iss" 

As shown in the example above, filenames that include spaces must be enclosed in quotes. 

ISCC will return an exit code of 0 if the compile was successful, 1 if the command line parameters 
were invalid or an internal error occurred, or 2 if the compile failed. 

· The Setup Script Wizard can be started from the command line. Command line usage is as follows: 

compiler /wizard <wizard name> <script name> 

Example: 

compil32 /wizard "MyProg Script Wizard" "c:\temp.iss" 

As shown in the example above, wizard names and filenames that include spaces must be enclosed 
in quotes. 

Running the wizard from the command line does not suppress any error messages. The Setup Script 
Wizard will return an exit code of 0 if there was no error and additionally it will save the generated 
script file to the specified filename, 1 if the command line parameters were invalid, or 2 if the 
generated script file could not be saved. If the user cancelled the Setup Script Wizard, an exit code of 
0 is returned and no script file is saved.



Setup Command Line Parameters
The Setup program accepts optional command line parameters. These can be useful to system 
administrators, and to other programs calling the Setup program. 

/SP- 
Disables the This will install... Do you wish to continue? prompt at the beginning of Setup. Of course, 
this will have no effect if the DisableStartupPrompt [Setup] section directive was set to yes. 

/SILENT, /VERYSILENT 
Instructs Setup to be silent or very silent. When Setup is silent the wizard and the background window
are not displayed but the installation progress window is. When a setup is very silent this installation 
progress window is not displayed. Everything else is normal so for example error messages during 
installation are displayed and the startup prompt is (if you haven't disabled it with 
DisableStartupPrompt or the '/SP-' command line option explained above) 

If a restart is necessary and the '/NORESTART' command isn't used (see below) and Setup is silent, 
it will display a Reboot now? message box. If it's very silent it will reboot without asking. 

/NOCANCEL 
Prevents the user from cancelling during the installation process, by disabling the Cancel button and 
ignoring clicks on the close button. Useful along with /SILENT. 

/NORESTART 
When combined with /SILENT or /VERYSILENT, instructs Setup not to reboot even if it's necessary. 

/LOADINF="filename" 
Instructs Setup to load the settings from the specified file after having checked the command line. 
This file can be prepared using the '/SAVEINF=' command as explained below. 

Don't forget to use quotes if the filename contains spaces. 

/SAVEINF="filename" 
Instructs Setup to save installation settings to the specified file. 

Don't forget to use quotes if the filename contains spaces. 

/LANG=language 
Specifies the language to use. language specifies the internal name of the language as specified in a 
[Languages] section entry. 

When a valid /LANG parameter is used, the Select Language dialog will be suppressed. 

/DIR="x:\dirname" 
Overrides the default directory name displayed on the Select Destination Directory wizard page. A 
fully qualified pathname must be specified. If the [Setup] section directive DisableDirPage was 
set to yes, this command line parameter is ignored. 

/GROUP="folder name" 
Overrides the default folder name displayed on the Select Start Menu Folder wizard page. If the 
[Setup] section directive DisableProgramGroupPage was set to yes, this command line 
parameter is ignored. 

/NOICONS 
Instructs Setup to initially check the Don't create any icons check box on the Select Start Menu Folder
wizard page. 

/COMPONENTS="comma separated list of component names" 
Overrides the default components settings. Using this command line parameter causes Setup to 
automatically select a custom type. 





Setup Exit Codes
Beginning with Inno Setup 3.0.3, the Setup program may return one of the following exit codes: 

0 Setup was successfully run to completion. 

1 Setup failed to initialize. 

2 The user clicked Cancel in the wizard before the actual installation started, or chose "No" on the 
opening "This will install..." message box. 

3 A fatal error occurred while preparing to move to the next installation phase (for example, from 
displaying the pre-installation wizard pages to the actual installation process). This should never 
happen except under the most unusual of circumstances, such as running out of memory or 
Windows resources. 

4 A fatal error occurred during the actual installation process. 

Note: Errors that cause an Abort-Retry-Ignore box to be displayed are not fatal errors. If the user 
chooses Abort at such a message box, exit code 5 will be returned. 

5 The user clicked Cancel during the actual installation process, or chose Abort at an Abort-Retry-
Ignore box. 

Before returning an exit code of 1, 3, or 4, an error message explaining the problem will normally be 
displayed. 

Future versions of Inno Setup may return additional exit codes, so applications checking the exit code 
should be programmed to handle unexpected exit codes gracefully. Any non-zero exit code indicates that 
Setup was not run to completion.



Uninstaller Command Line Parameters
The uninstaller program (unins???.exe) accepts optional command line parameters. These can be useful 
to system administrators, and to other programs calling the uninstaller program. 

/SILENT 
When specified, the uninstaller will not ask the user any questions or display a message stating that 
uninstall is complete. Shared files that are no longer in use are deleted automatically without 
prompting. Any critical error messages will still be shown on the screen. 

/NORESTART 
When combined with /SILENT, the prompt to restart the computer will also be suppressed. 



Uninstaller Exit Codes
Beginning with Inno Setup 4.0.8, the uninstaller will return a non-zero exit code if the user cancels or a 
fatal error is encountered. Programs checking the exit code to detect failure should not check for a 
specific non-zero value; any non-zero exit code indicates that the uninstaller was not run to completion. 

Note that at the moment you get an exit code back from the uninstaller, some code related to 
uninstallation might still be running. Because Windows doesn't allow programs to delete their own EXEs, 
the uninstaller creates and spawns a copy of itself in the TEMP directory. This "clone" performs the actual 
uninstallation, and at the end, terminates the original uninstaller EXE (at which point you get an exit code 
back), deletes it, then displays the "uninstall complete" message box (if it hasn't been suppressed with 
/SILENT).



Unsafe Files
As a convenience to new users who are unfamiliar with which files they should and should not distribute, 
the Inno Setup compiler will display an error message if one attempts to install certain "unsafe" files using 
the [Files] section. These files are listed below. 

(Note: It is possible to disable the error message by using a certain flag on the [Files] section entry, but 
this is NOT recommended.) 

Any DLL file from own Windows System directory 
You should not deploy any DLLs out of your own Windows System directory because most of them 
are tailored for your own specific version of Windows, and will not work when installed on other 
versions. Often times a user's system will be rendered unbootable if you install a DLL from a 
different version of Windows. Another reason why it's a bad idea is that when you install programs on 
your computer, the DLLs may be replaced with different/incompatible versions, and were you not to 
notice this and take action, it could also lead to problems on users' systems when you build new 
installations. 

Instead of deploying the DLLs from your Windows System directory, you should find versions that are 
specifically deemed "redistributable". Redistributable DLLs typically work on more than one version of
Windows. To find redistributable versions of the Visual Basic and Visual C++ run-time DLLs, see the 
Inno Setup FAQ. 

If you have a DLL residing in the Windows System directory that you are absolutely sure is 
redistributable, copy it to your script's source directory and deploy it from there instead. 

ADVAPI32.DLL, COMDLG32.DLL, GDI32.DLL, KERNEL32.DLL, SHELL32.DLL, USER32.DLL 
These are all core components of Windows and must never be deployed with an installation. Users 
may only get new versions of these DLLs by installing a new version of Windows or a service pack or 
hotfix for Windows. 

COMCAT.DLL version 5.0 
Version 5.0 of COMCAT.DLL must not be redistributed because it does not work on Windows 95 or 
NT 4.0. If you need to install COMCAT.DLL, use version 4.71 instead. 
Reference: http://support.microsoft.com/support/kb/articles/Q201/3/64.ASP

COMCTL32.DLL 
Microsoft does not allow separate redistribution of COMCTL32.DLL (and for good reason - the file 
differs between platforms), so you should never place COMCTL32.DLL in a script's [Files] section. 
You can however direct your users to download the COMCTL32 update from Microsoft, or distribute 
the COMCTL32 update along with your program. 
Reference: http://www.microsoft.com/permission/copyrgt/cop-soft.htm#COM
Reference: http://www.microsoft.com/downloads/details.aspx?FamilyID=cb2cf3a2-8025-4e8f-8511-
9b476a8d35d2&DisplayLang=en

CTL3D32.DLL, Windows NT-specific version 
Previously, on the "Installing Visual Basic 5.0 & 6.0 Applications" How-To page there was a version of 
CTL3D32.DLL included in the zip files. At the time I included it, I was not aware that it only was 
compatible with Windows NT. Now if you try to install that particular version of CTL3D32.DLL you 
must use a MinVersion setting that limits it to Windows NT platforms only. (You shouldn't need to 
install CTL3D32.DLL on Windows 9x anyway, since all versions have a 3D look already.) 

SHLWAPI.DLL 
This is a component of Internet Explorer which is also used by Windows Explorer. Replacing it may 
prevent Explorer from starting. If your application depends on this DLL, or a recent version of it, then 
your users will need to install a recent version of Internet Explorer to get it. 



Credits
The following is a list of those who have contributed significant code to the Inno Setup project, or 
otherwise deserve special recognition: 

Jean-loup Gailly & Mark Adler: Creators of the zlib compression library that Inno Setup uses. 

Julian Seward: Creator of the bzlib compression library that Inno Setup uses. 

?: Most of the disk spanning code (1.09). (Sorry, I somehow managed to lose your name!) 

Vince Valenti: Most of the code for the "Window" [Setup] section directives (1.12.4). 

Joe White: Code for ChangesAssociations [Setup] section directive (1.2.?). 

Jason Olsen: Most of the code for appending to existing uninstall logs (1.3.0). 

Martijn Laan: Code for Rich Edit 2.0 & URL detection support (1.3.13); silent uninstallation (1.3.25); 
system image list support in drive and directory lists (1.3.25); silent installation (2.0.0); [Types], 
[Components] and [Tasks] sections (2.0.0); postinstall flag (2.0.0); [Code] section (4.0.0); 
Subcomponents and subtasks support (4.0.0). 

Alex Yackimoff: Portions of TNewCheckListBox (4.0.0). 

Carlo Kok: Innerfuse Pascal Script (4.0.0). 

Creators of SynEdit: The syntax-highlighting editor used in the Compiler (2.0.0). 

If I have left anyone out, please don't hesitate to let me know.



Contacting Me
The latest versions of Inno Setup and other software I've written can be found on my web site at: 
http://www.jrsoftware.org/

For information on contacting me and obtaining technical support for Inno Setup, go to this page: 
http://www.jrsoftware.org/contact.php



[Setup]: Bits
Valid values: 32 

Description: 
Obsolete in 1.3. Pre-1.3 versions of Inno Setup had a 16-bit version, and the Bits directive was checked 
by the Compiler to determine if the correct Compiler was being used to compile the script. Since the 
newer versions of Inno Setup are available in a 32-bit version only, you are no longer required to set this 
directive. If, however, Bits is set to "16", the Compiler will fail with an error message.



[Setup]: UseSetupLdr
Valid values: yes   or   no   

Default value: yes 

Description: 
This tells the Setup Compiler which type of Setup to create. If this is yes, it compiles all setup data into a 
single EXE. If this is no, it compiles the setup data into at least three files: SETUP.EXE, SETUP.0, and 
SETUP-1.BIN. The only reason you would probably want to use no is for debugging purposes. 

Note: Do not use UseSetupLdr=no on an installation which uses disk spanning (DiskSpanning=yes). 
When UseSetupLdr is yes, the setup program is copied to and run from the user's TEMP directory. This
does not happen when UseSetupLdr is no, and could result in errors if Windows tries to locate the 
setup.exe file on the disk and can't find it because a different disk is in the drive.



[Setup]: BackColor, BackColor2
Valid values: A value in the form of $bbggrr, where rr, gg, and bb specify the two-digit intensities (in 

hexadecimal) for red, green, and blue respectively. Or it may be one of the following 
predefined color names: clBlack, clMaroon, clGreen, clOlive, clNavy, clPurple, clTeal, 
clGray, clSilver, clRed, clLime, clYellow, clBlue, clFuchsia, clAqua, clWhite. 

Default value: clBlue for BackColor, 
clBlack for BackColor2 

Description: 
The BackColor directive specifies the color to use at the top (or left, if 
BackColorDirection=lefttoright) of the setup window's gradient background. BackColor2 
specifies the color to use at the bottom (or right). 

The setting of BackColor2 is ignored if BackSolid=yes.

Examples:
BackColor=clBlue 
BackColor2=clBlack 

BackColor=$FF0000 
BackColor2=$000000



[Setup]: BackColorDirection
Valid values: toptobottom or lefttoright 

Default value: toptobottom 

Description: 
This determines the direction of the gradient background on the setup window. If BackColorDirection
is toptobottom, it is drawn from top to bottom; if it is lefttoright, it is drawn from left to right.



[Setup]: BackSolid
Valid values: yes   or   no   

Default value: no 

Description: 
This specifies whether to use a solid or gradient background on the setup window. If this is yes, the 
background is a solid color (the color specified by BackColor; BackColor2 is ignored).



[Setup]: AppName
Description: 
This required directive specifies the title of the application you are installing. Do not include the version 
number, as the AppVerName directive is for that purpose. AppName is shown throughout the installation 
process, in places like the upper-left corner of the Setup screen, and in the wizard. 

Example: AppName=My Program 



[Setup]: AppVerName
Description: 
The value of this required directive should be the same (or similar to) the value of AppName, but it should 
also include the program's version number. 

Example: AppVerName=My Program version 3.0 



[Setup]: AppId
Default value: If AppId is not specified or is blank, the Compiler uses the value of the AppName 

directive for AppId. 

Description: 
The value of AppId is stored inside uninstall log files (unins???.dat), and is checked by subsequent 
installations to determine whether it may append to a particular existing uninstall log. Setup will only 
append to an uninstall log if the AppId of the existing uninstall log is the same as the current installation's
AppId. For a practical example, say you have two installations -- one entitled My Program and the other 
entitled My Program 1.1 Update. To get My Program 1.1 Update to append to My Program's uninstall log, 
you would have to set AppId to the same value in both installations. 

AppId also determines the actual name of the Uninstall registry key, to which Inno Setup tacks on "_is1" 
at the end. (Therefore, if AppId is "MyProgram", the key will be named "MyProgram_is1".) Pre-1.3 
versions of Inno Setup based the key name on the value of AppVerName. 

AppId is a not used for display anywhere, so feel free to make it as cryptic as you desire. 

Example: AppId=MyProgram 



[Setup]: AppMutex
Description: 
This directive is used to prevent the user from installing new versions of an application while the 
application is still running, and to prevent the user from uninstalling a running application. It specifies the 
names of one or more named mutexes (multiple mutexes are separated by commas), which Setup and 
Uninstall will check for at startup. If any exist, Setup/Uninstall will display the message: "[Setup or 
Uninstall] has detected that [AppName] is currently running. Please close all instances of it now, then click
OK to continue, or Cancel to exit." 

Use of this directive requires that you add code to your application which creates a mutex with the name 
you specify in this directive. Examples of creating a mutex in Delphi, C, and Visual Basic are shown 
below. The code should be executed during your application's startup. 

Delphi: 

CreateMutex(nil, False, 'MyProgramsMutexName'); 

C: 

CreateMutex(NULL, FALSE, "MyProgramsMutexName"); 

Visual Basic (submitted by Peter Young): 

'Place in Declarations section: 
Private Declare Function CreateMutex Lib "kernel32" _ 
        Alias "CreateMutexA" _ 
       (ByVal lpMutexAttributes As Long, _ 
        ByVal bInitialOwner As Long, _ 
        ByVal lpName As String) As Long 

'Place in startup code (Form_Load or Sub Main): 
CreateMutex 0&, 0&, "MyProgramsMutexName" 

It is not necessary to explicitly destroy the mutex object upon your application's termination; the system 
will do this automatically. Nor is it recommended that you do so, because ideally the mutex object should 
exist until the process completely terminates. 

Note that mutex name comparison in Windows is case sensitive. 

See the topic for CreateMutex in the MS SDK help for more information on mutexes. 

Example: AppMutex=MyProgramsMutexName 



[Setup]: AppCopyright
Description: 
This is optional, and is only used to display a copyright message in the bottom-right corner of Setup's 
background window. 

Note that the copyright message will only be seen if WindowVisible is yes. 

Example: AppCopyright=Copyright © 1997 My Company, Inc. 



[Setup]: AppPublisher, AppPublisherURL, AppSupportURL, AppUpdatesURL, 
AppVersion
Description: 
These are all used for display purposes on the "Support" dialog of the Add/Remove Programs Control 
Panel applet in Windows 2000/XP. Setting them is optional, and will have no effect on earlier Windows 
versions. 

Example:
AppPublisher=My Company, Inc. 
AppPublisherURL=http://www.mycompany.com/ 
AppVersion=1.5



[Setup]: DefaultDirName
Description: 
This value of this required directive is used for the default directory name, which is used in the Select 
Destination Directory page of the wizard. Normally it is prefixed by a directory constant. 

If UsePreviousAppDir is yes (the default) and Setup finds a previous version of the same application is 
already installed, it will substitute the default directory name with the directory selected previously. 

Example:

If you used: 
DefaultDirName={sd}\MYPROG 
In Setup, this would typically display: 
C:\MYPROG 

If you used: 
DefaultDirName={pf}\My Program 
In Setup, this would typically display: 
C:\Program Files\My Program 



[Setup]: Uninstallable
Valid values: yes   or   no   

Default value: yes 

Description: 
This determines if Inno Setup's automatic uninstaller is to be included in the installation. If this is yes the 
uninstaller is included. If this is no, no uninstallation support is included, requiring the end-user to 
manually remove the files pertaining to your application.



[Setup]: MinVersion
Format: a.bb,c.dd, where a.bb is the Windows version, and c.dd is the Windows NT version. 

Default value: 4,4 

Description: 
This directive lets you specify a minimum version of Windows or Windows NT that your software runs on. 
To prevent your program from running on Windows or Windows NT, specify "0" for one the minimum 
versions. Build numbers and/or service pack levels may be included in the version numbers. 

If the user's system does not meet the minimum version requirement, Setup will give an error message 
and exit.



[Setup]: OnlyBelowVersion
Format: a.bb,c.dd, where a.bb is the Windows version, and c.dd is the Windows NT version. 

Default: 0,0 

Description: 
This directive lets you specify a minimum version of Windows or Windows NT that your software will not 
run on. Specifying "0" for one of the versions means there is no upper version limit. Build numbers and/or 
service pack levels may be included in the version numbers. 

This directive is essentially the opposite of MinVersion.



[Setup]: AdminPrivilegesRequired
Valid values: yes   or   no   

Default value: no 

Description: 
Obsolete in 3.0.4. While AdminPrivilegesRequired is still recognized by the compiler, 
PrivilegesRequired supersedes and overrides it. 

When set to yes, Setup will give an error message at startup ("You must be logged in as an administrator 
when installing this program") if the user doesn't have administrative privileges. This only applies to 
Windows NT platforms.



[Setup]: PrivilegesRequired
Valid values: none, poweruser, or admin 

Default value: none 

Description: 
This directive specifies the minimum user privileges required to run the installation. When set to 
poweruser or admin, Setup will give an error message at startup (e.g. "You must be logged in as an 
administrator when installing this program") if the user doesn't have at least Power User or administrative 
privileges, respectively. This only applies to Windows NT platforms.



[Setup]: DisableAppendDir
Valid values: yes   or   no   

Default value: no 

Description: 
When set to yes, Setup won't automatically append the last component of the path from DefaultDirName 
to directories the user double-clicks on the Select Destination Directory wizard page. In addition, it sets 
the directory list box's initial directory to DefaultDirName (if the directory exists) instead of one level up.



[Setup]: EnableDirDoesntExistWarning
Valid values: yes   or   no   

Default value: no 

Description: 
When set to yes, Setup will display a message box if the directory the user selects doesn't exist. Usually 
you will also set DirExistsWarning=no when this is yes.



[Setup]: AlwaysCreateUninstallIcon
Description: 
Obsolete in 3.0. This directive is no longer supported. If you wish to create an Uninstall icon, use the new 
{uninstallexe} constant in the Filename parameter of an [Icons] section entry.



[Setup]: ExtraDiskSpaceRequired
Default value: 0 

Description: 
Normally, the disk space requirement displayed on the wizard is calculated by adding up the size of all the
files in the [Files] section. If you want to increase the disk space display for whatever reason, set 
ExtraDiskSpaceRequired to the amount of bytes you wish to add to this figure. (1048576 bytes = 1 
megabyte)



[Setup]: CompressLevel
Valid values: 0 through 9 

Default value: 7 

Description: 
Obsolete in 2.0.17. While CompressLevel is still recognized by the compiler, Compression supersedes 
and overrides it. 

This is a number from 0 to 9 specifying how much compression to use on the files. 0 is no compression, 9
is maximum compression. 



[Setup]: Compression
Valid values: zip 

zip/1 through zip/9 
bzip 
bzip/1 through bzip/9 
none 

Default value: zip 

Description: 
This specifies the type of compression to use on the files, and optionally the level of compression from 1 
to 9, where 9 is maximum compression. Higher numbers are slower. 

zip is the type of compression used by .zip files ("deflate"). It is relatively fast. If a compression level isn't 
specified, it defaults to 7. 

bzip is the type of compression used by the bzip2 compressor. It almost always compresses better than 
zip but can be significantly slower in both compression and decompression. It also requires about 3 MB 
more memory during decompression. If a compression level isn't specified, it defaults to 9. 

none specifies that no compression be used.



[Setup]: SolidCompression
Valid values: yes   or   no   

Default value: no 

Description: 
If yes, solid compression will be enabled. This causes all files to be compressed at once instead of 
separately. This can result a much greater overall compression ratio if your installation contains many files
with common content, such as text files. Be sure to also use Compression=bzip, since the default zip 
compression doesn't benefit too much from solid compression (as it works with smaller blocks). 

The disadvantage to using solid compression is that because all files are compressed into a single 
compressed stream, Setup can no longer randomly access the files. This can decrease performance. If a 
certain file isn't going to be extracted on the user's system, it has to decompress the data for that file 
anyway (into memory) before it can decompress the next file. And if, for example, there was an error while
extracting a particular file and the user clicks Retry, it can't just seek to the beginning of that file's 
compressed data; since all files are stored in one stream, it has seek to the very beginning. If disk 
spanning was enabled, the user would have to re-insert disk 1. 

Thus, it is not recommended that solid compression be enabled on huge installs (say, over 100 MB) or on 
disk-spanned installs. It is primarily designed to save download time on smaller installs distributed over 
the Internet.



[Setup]: InternalCompressLevel
Valid values: 0 through 9 

Default value: 9 

Description: 
This is a number from 0 to 9 specifying how much compression to use on internal structures used by 
Setup. 0 is no compression, 9 is maximum compression. Higher numbers are slower. Generally, there is 
no reason to change this from the default setting of 9.



[Setup]: CreateAppDir
Valid values: yes   or   no   

Default value: yes 

Description: 
If this is set to no, no directory for the application will be created, the Select Destination Directory wizard 
page will not be displayed, and the {app} directory constant is equivalent to the {win} directory constant. If 
the uninstall feature is enabled when CreateAppDir is no, the uninstall data files are created in the 
system's Windows directory.



[Setup]: CreateUninstallRegKey
Valid values: yes   or   no   

Default value: yes 

Description: 
If this is set to no, Setup won't create an entry in the Add/Remove Programs Control Panel applet. This 
can be useful if your installation is merely an update to an existing application and you don't want another 
entry created, but don't want to the disable the uninstall features entirely (via Uninstallable=no). 

When this directive is set to no, UpdateUninstallLogAppName is usually set to no as well.



[Setup]: OverwriteUninstRegEntries
Description: 
Obsolete in 1.3. This directive is no longer supported and is ignored. In Inno Setup 1.3.6 and later, it 
functions as if the OverwriteUninstRegEntries directive of prior versions was set to 1 (which was 
the default setting).



[Setup]: DirExistsWarning
Valid values: auto, yes  , or   no   

Default value: auto 

Description: 
When set to auto, the default setting, Setup will show a "The directory ... already exists. Would you like 
to install to that directory anyway?" message if the user selects a directory that already exists on the 
Select Destination Directory wizard page, except when another version of the same application is already 
installed and the selected directory is the same as the previous one (only if UsePreviousAppDir is 
yes, the default setting). 

When set to yes, Setup will always display the "Directory Exists" message when the user selects an 
existing directory. 

When set to no, Setup will never display the "Directory Exists" message.



[Setup]: DisableDirExistsWarning
Valid values: yes   or   no   

Default value: no 

Description: 
Obsolete in 1.3.6. Use DirExistsWarning instead. 

DisableDirExistsWarning is still recognized by the compiler, however. It translates 
DisableDirExistsWarning=no to DirExistsWarning=auto, and 
DisableDirExistsWarning=yes to DirExistsWarning=no. If both DisableDirExistsWarning 
and DirExistsWarning directives are specified, DirExistsWarning takes precedence.



[Setup]: DisableDirPage
Valid values: yes   or   no   

Default value: no 

Description: 
If this is set to yes, Setup will not show the Select Destination Directory wizard page. In this case, it will 
always use the default directory name.



[Setup]: DisableFinishedPage
Valid values: yes   or   no   

Default value: no 

Description: 
If this is set to yes, Setup will not show the Setup Completed wizard page, and instead will immediately 
close the Setup program once the installation process finishes. This may be useful if you execute a 
program in the [Run] section using the nowait flag, and don't want the Setup Completed window to 
remain in the background after the other program has started.

Note that the DisableFinishedPage directive is ignored if a restart of the computer is deemed 
necessary, or if a file is assigned to the InfoAfterFile [Setup] section directive. In those cases, the 
Setup Completed wizard page will still be displayed.



[Setup]: DisableProgramGroupPage
Valid values: yes   or   no   

Default value: no 

Description: 
If this is set to yes, Setup will not show the Select Start Menu Folder wizard page. In this case, it uses the
folder name specified by the DefaultGroupName [Setup] section directive, or "(Default)" if none is 
specified.



[Setup]: DisableReadyMemo
Valid values: yes   or   no   

Default value: no 

Description: 
If this is set to yes, Setup will not show a list of settings on the Ready to Install wizard page. Otherwise 
the list is shown and contains information like the chosen setup type and the chosen components.



[Setup]: DisableReadyPage
Valid values: yes   or   no   

Default value: no 

Description: 
If this is set to yes, Setup will not show the Ready to Install wizard page.



[Setup]: UserInfoPage
Valid values: yes   or   no   

Default value: no 

Description: 
If this is set to yes, Setup will show a User Information wizard page which asks for the user's name, 
organization and possibly a serial number. The values the user enters are stored in the 
{userinfoname}, {userinfoorg} and {userinfoserial} constants. You can use these constants 
in [Registry] or [INI] entries to save their values for later use. 

The DefaultUserInfoName, DefaultUserInfoOrg and DefaultUserInfoSerial directives determine the default
name, organization and serial number shown. If UsePreviousUserInfo is yes (the default) and Setup finds
that a previous version of the same application is already installed, it will use the name, organization and 
serial number entered previously instead.



[Setup]: DefaultUserInfoName
Default value: {sysuserinfoname} 

Description: 
Specifies the default name shown on the User Information wizard page. This can include constants.



[Setup]: DefaultUserInfoOrg
Default value: {sysuserinfoorg} 

Description: 
Specifies the default organization shown on the User Information wizard page. This can include 
constants.



[Setup]: DefaultUserInfoSerial
Description: 
Specifies the default serial number shown on the User Information wizard page. This can include 
constants.



[Setup]: AlwaysUsePersonalGroup
Valid values: yes   or   no   

Default value: no 

Description: 
Normally on Windows NT platforms, Inno Setup's {group} constant points to the All Users start menu if 
the user has administrative privileges. If this directive is set to yes, it always uses current user's profile.



[Setup]: OutputBaseFilename
Default value: setup 

Description: 
This directive allows you to assign a different name for the resulting Setup file(s), so you don't have to 
manually rename them after running the Setup Compiler. 

Note: If UseSetupLdr is set to no, the names of the resulting files SETUP.0 and SETUP.MSG will not 
change since they are hard-coded names. 

Example: OutputBaseFilename=MyProg100 



[Setup]: UninstallFilesDir
Default value: {app} 

Description: 
Specifies the directory where the "unins*.*" files for the uninstaller are stored. 

Note: You should not assign a different value here on a new version of an application, or else Setup won't 
find the uninstall logs from the previous versions and therefore won't be able to append to them. 

Example: UninstallFilesDir={app}\uninst 



[Setup]: UninstallDisplayIcon
Description: 
This lets you specify a particular icon file (either an executable or an .ico file) to display for the Uninstall 
entry in the Add/Remove Programs Control Panel applet on Windows 2000/XP. The filename will normally
begin with a directory constant. 

If the file you specify contains multiple icons, you may append the suffix ",n" to specify an icon index, 
where n is the zero-based numeric index. 

If this directive is not specified or is blank, Windows will select an icon itself, which may not be the one 
you prefer. 

Examples:
UninstallDisplayIcon={app}\MyProg.exe 
UninstallDisplayIcon={app}\MyProg.exe,1



[Setup]: UninstallDisplayName
Description: 
This lets you specify a custom name for the program's entry in the Add/Remove Programs Control Panel 
applet. The value may include constants. If this directive is not specified or is blank, Setup will use the 
value of [Setup] section directive AppVerName for the name. 

Due to limitations of Windows 9x's Add/Remove Programs Control Panel applet, the value of 
UninstallDisplayName will be trimmed if it exceeds 63 characters. 

Example: UninstallDisplayName=My Program 



[Setup]: UninstallIconName
Description: 
Obsolete in 3.0. This directive is no longer supported. If you wish to create an Uninstall icon, use the new 
{uninstallexe} constant in the Filename parameter of an [Icons] section entry.



[Setup]: UninstallLogMode
Valid values: append, new, or overwrite 

Default value: append 

Description: 
append, the default setting, instructs Setup to append to an existing uninstall log when possible. 

new, which corresponds to the behavior in pre-1.3 versions of Inno Setup, instructs Setup to always 
create a new uninstall log. 

overwrite instructs Setup to overwrite any existing uninstall logs from the same application instead of 
appending to them (this is not recommended). The same rules for appending to existing logs apply to 
overwriting existing logs. 

Example: UninstallLogMode=append 



[Setup]: UninstallRestartComputer
Valid values: yes   or   no   

Default value: no 

Description: 
When set to yes, the uninstaller will always prompt the user to restart the system at the end of a 
successful uninstallation, regardless of whether it is necessary (e.g., because of [Files] section entries 
with the uninsrestartdelete flag).



[Setup]: UpdateUninstallLogAppName
Valid values: yes   or   no   

Default value: yes 

Description: 
If yes, when appending to an existing uninstall log, Setup will replace the AppName field in the log with 
the current installation's AppName. The AppName field of the uninstall log determines the title displayed in 
the uninstaller. You may want to set this to no if your installation is merely an upgrade or add-on to an 
existing program, and you don't want the title of the uninstaller changed.



[Setup]: DefaultGroupName
Description: 
The value of this directive is used for the default Start Menu folder name on the Select Start Menu Folder 
page of the wizard. If this directive is blank or isn't specified, it will use "(Default)" for the name. 

Keep in mind that Start Menu folders are stored as literal directories so any characters not allowed in 
normal directory names can't be used in Start Menu folder names. 

Example: DefaultGroupName=My Program 



[Setup]: DisableStartupPrompt
Valid values: yes   or   no   

Default value: yes 

Description: 
When this is set to yes, Setup will not show the This will install... Do you wish to continue? prompt. 

This setting has no effect if UseSetupLdr is set to no.



[Setup]: DiskSpanning
Valid values: yes   or   no   

Default value: no 

Description: 
If set to yes, the disk spanning feature will be enabled. Instead of storing all the compressed file data 
inside SETUP.EXE, the compiler will split it into multiple SETUP-*.BIN files -- known as "slices" -- suitable 
for copying onto separate floppy disks, CD-ROMs, or DVD-ROMs. Each generated slice contains a 
number in its name which indicates the disk onto which it should be copied. (For example, SETUP-2.BIN 
should be placed on disk 2.) The generated SETUP.EXE always goes on disk 1 along with the SETUP-
1*.BIN file. 

The size of each slice and the number of slices to create for each disk are determined by the values of 
the DiskSliceSize and SlicesPerDisk [Setup] section directives, respectively. Other disk spanning-
related directives that you may want to tweak include DiskClusterSize and ReserveBytes. 

Note that it is required that you set this directive to yes if the compressed size of your installation 
exceeds 2,100,000,000 bytes, even if you don't intend to place the installation onto multiple disks. (The 
installation will still function correctly if all the SETUP-*.BIN files are placed on the same disk.)



[Setup]: DiskSliceSize
Valid values: 262144 through 2100000000 

Default value: 1457664 (the size of a 1.44MB floppy) 

Description: 
This specifies the maximum number of bytes per disk slice (SETUP-*.BIN file). Normally, this should be 
set to the total number of bytes available on the disk media divided by the value of the SlicesPerDisk 
[Setup] section directive, which defaults to 1. 

This directive is ignored if disk spanning is not enabled using the DiskSpanning [Setup] section 
directive.



[Setup]: DiskClusterSize
Default value: 512 (the standard cluster size for floppy disks) 

Description: 
This specifies the cluster size of the disk media. The Setup Compiler needs to know this in order to 
properly fill each disk to capacity. 

This directive is ignored if disk spanning is not enabled using the DiskSpanning [Setup] section 
directive.



[Setup]: SlicesPerDisk
Valid values: 1 through 26 

Default value: 1 

Description: 
The number of SETUP-*.BIN files to create for each disk. If this is 1 (the default setting), the files will be 
named SETUP-x.BIN, where x is the disk number. If this is greater than 1, the files will be named SETUP-
xy.BIN, where x is the disk number and y is a unique letter. 

One reason why you may need to increase this from the default value of 1 is if the size of your disk media
exceeds 2,100,000,000 bytes -- the upper limit of the DiskSliceSize [Setup] section directive. If, for 
example, your disk media has a capacity of 3,000,000,000 bytes, you can avoid the 2,100,000,000-byte 
disk slice size limit by setting SlicesPerDisk to 2 and DiskSliceSize to 1500000000 (or perhaps 
slightly less, due to file system overhead).



[Setup]: ReserveBytes
Default value: 0 

Description: 
This specifies the minimum number of free bytes to reserve on the first disk. This is useful if you have to 
copy other files onto the first disk that aren't part of the setup program, such as a Readme file. 

The Setup Compiler rounds this number up to the nearest cluster. 

This directive is ignored if disk spanning is not enabled using the DiskSpanning [Setup] section 
directive.



[Setup]: DontMergeDuplicateFiles
Valid values: yes   or   no   

Default value: no 

Description: 
Normally two file entries referring to the same source file will be compressed and stored only once. If you 
have a bunch of identical files in your installation, make them point to the same source file in the script, 
and the size of your installation can drop significantly. If you wish to disable this feature for some reason, 
set this directive to yes.



[Setup]: AllowCancelDuringInstall
Valid values: yes   or   no   

Default value: yes 

Description: 
Setting this to no prevents the user from cancelling during the actual installation process, by disabling the 
Cancel button and ignoring clicks on the close button. This has the same effect as passing /NOCANCEL 
to Setup on the command line.



[Setup]: AllowNoIcons
Valid values: yes   or   no   

Default value: no 

Description: 
This is used to determine whether Setup should display a Don't create any icons check box, which allows 
the user to skip creation of program icons. If it is no the check box will not be displayed; if it is yes it will 
be displayed.



[Setup]: AllowRootDirectory
Valid values: yes   or   no   

Default value: no 

Description: 
When set to no, the default, the user will not be allowed to enter a root directory (such as "C:\") on the 
Select Destination Directory page of the wizard.



[Setup]: AllowUNCPath
Valid values: yes   or   no   

Default value: yes 

Description: 
If set to no, the user will not be allowed to enter a UNC path (such as "\\server\share") on the Select 
Destination Directory page of the wizard. This was the default behavior in Inno Setup 2.0.17 and earlier.



[Setup]: AlwaysRestart
Valid values: yes   or   no   

Default value: no 

Description: 
When set to yes, Setup will always prompt the user to restart the system at the end of a successful 
installation, regardless of whether this is necessary (for example, because of [Files] section entries 
with the restartreplace flag).



[Setup]: RestartIfNeededByRun
Valid values: yes   or   no   

Default value: yes 

Description: 
When set to yes, and a program executed in the [Run] section queues files to be replaced on the next 
reboot (by calling MoveFileEx or by modifying wininit.ini), Setup will detect this and prompt the user to 
restart the computer at the end of installation.



[Setup]: MessagesFile
Description: 
Obsolete in 4.0. This directive is no longer supported. Use the new [Languages] section to specify a 
custom messages file.



[Setup]: LicenseFile
Description: 
Specifies the name of an optional license agreement file, in .txt or .rtf (rich text) format, which is displayed 
before the user selects the destination directory for the program. This file must be located in your 
installation's source directory when running the Setup Compiler, unless a fully qualified pathname is 
specified or the pathname is prefixed by "compiler:", in which case it looks for the file in the Compiler 
directory. 

If the user selects a language for which the LicenseFile parameter is set, this directive is effectively 
ignored. See the [Languages] section documentation for more information. 

Example: LicenseFile=license.txt 



[Setup]: InfoBeforeFile
Description: 
Specifies the name of an optional "readme" file, in .txt or .rtf (rich text) format, which is displayed before 
the user selects the destination directory for the program. This file must be located in your installation's 
source directory when running the Setup Compiler, unless a fully qualified pathname is specified or the 
pathname is prefixed by "compiler:", in which case it looks for the file in the Compiler directory. 

If the user selects a language for which the InfoBeforeFile parameter is set, this directive is 
effectively ignored. See the [Languages] section documentation for more information. 

Example: InfoBeforeFile=infobefore.txt 



[Setup]: InfoAfterFile
Description: 
Specifies the name of an optional "readme" file, in .txt or .rtf (rich text) format, which is displayed after a 
successful install. This file must be located in your installation's source directory when running the Setup 
Compiler, unless a fully qualified pathname is specified or the pathname is prefixed by "compiler:", in 
which case it looks for the file in the Compiler directory. 

This differs from isreadme files in that this text is displayed as a page of the wizard, instead of in a 
separate Notepad window. 

If the user selects a language for which the InfoAfterFile parameter is set, this directive is effectively 
ignored. See the [Languages] section documentation for more information. 

Example: InfoAfterFile=infoafter.txt 



[Setup]: ChangesAssociations
Valid values: yes   or   no   

Default value: no 

Description: 
When set to yes, Setup will tell Explorer to refresh its file associations information at the end of the 
installation, and Uninstall will do the same at the end of uninstallation. 

If your installation creates a file association but doesn't have ChangesAssociations set to yes, the 
correct icon for the file type likely won't be displayed until the user logs off or restarts the computer. 



[Setup]: UsePreviousAppDir
Valid values: yes   or   no   

Default value: yes 

Description: 
When this directive is yes, the default, at startup Setup will look in the registry to see if the same 
application is already installed, and if so, it will use the directory of the previous installation as the default 
directory presented to the user in the wizard. 

Note that only Inno Setup 1.3.1 and later save the directory in the registry, so Setup will not "see" 
applications installed with older Inno Setup versions. 

If Uninstallable is no, this directive is effectively forced to no.



[Setup]: UsePreviousGroup
Valid values: yes   or   no   

Default value: yes 

Description: 
When this directive is yes, the default, at startup Setup will look in the registry to see if the same 
application is already installed, and if so, it will use the Start Menu folder name of the previous installation 
as the default Start Menu folder name presented to the user in the wizard. 

Note that only Inno Setup 1.3.10 and later save the Start Menu folder name in the registry, so Setup will 
not reuse the Start Menu folder name of applications installed with older Inno Setup versions. 

If Uninstallable is no, this directive is effectively forced to no.



[Setup]: UsePreviousSetupType
Valid values: yes   or   no   

Default value: yes 

Description: 
When this directive is yes, the default, at startup Setup will look in the registry to see if the same 
application is already installed, and if so, it will use the setup type and component settings of the previous 
installation as the default settings presented to the user in the wizard. 

If Uninstallable is no, this directive is effectively forced to no.



[Setup]: UsePreviousTasks
Valid values: yes   or   no   

Default value: yes 

Description: 
When this directive is yes, the default, at startup Setup will look in the registry to see if the same 
application is already installed, and if so, it will use the task settings of the previous installation as the 
default settings presented to the user in the wizard. 

If Uninstallable is no, this directive is effectively forced to no.



[Setup]: UsePreviousUserInfo
Valid values: yes   or   no   

Default value: yes 

Description: 
When this directive is yes, the default, at startup Setup will look in the registry to see if the same 
application is already installed, and if so, it will use the name, organization and serial number entered 
previously as the default settings presented to the user on the User Information wizard page. 

If Uninstallable is no, this directive is effectively forced to no.



[Setup]: Password
Description: 
Specifies a password you want to prompt the user for at the beginning of the installation. 

When using a password, it's important to keep in mind that since no encryption is used and the source 
code to Inno Setup is freely available, it would not be too difficult for an experienced individual to remove 
the password protection from an installation. Use this only as a "deterrent" to keep unauthorized people 
out of your installations. 

The password itself is not stored as clear text; it's stored as a 32-bit hash.



[Setup]: WizardImageFile
Default value: compiler:WIZMODERNIMAGE.BMP 

Description: 
Specifies the name of the bitmap file to display on the left side of the wizard in the Setup program. This 
file must be located in your installation's source directory when running the Setup Compiler, unless a fully 
qualified pathname is specified or the pathname is prefixed by "compiler:", in which case it looks for the 
file in the Compiler directory. 

256-color bitmaps may not display correctly in 256-color mode, since it does not handle palettes. The 
maximum size of the bitmap is 164x314 pixels. Note that if Windows is running with Large Fonts, the area
on the wizard for the bitmap will be larger. 

Example: WizardImageFile=myimage.bmp 



[Setup]: WindowShowCaption
Valid values: yes   or   no   

Default value: yes 

Description: 
If set to no, Setup will be truly "full screen" -- it won't have a caption bar or border, and it will be on top of 
the taskbar. 

This directive has no effect if WindowVisible is not set to yes.



[Setup]: WindowStartMaximized
Valid values: yes   or   no   

Default value: yes 

Description: 
If set to yes, the Setup program's background window will initially be displayed in a maximized state, 
where it won't cover over the taskbar. 

This directive has no effect if WindowVisible is not set to yes.



[Setup]: WindowResizable
Valid values: yes   or   no   

Default value: yes 

Description: 
If set to no, the user won't be able to resize the Setup program's background window when it's not 
maximized. 

This directive has no effect if WindowVisible is not set to yes.



[Setup]: WindowVisible
Valid values: yes   or   no   

Default value: no 

Description: 
If set to yes, there will be a gradient background window displayed behind the wizard. 

Note that this is considered a legacy feature; it likely will be removed at some point in the future.



[Setup]: WizardImageBackColor
Valid values: A value in the form of $bbggrr, where rr, gg, and bb specify the two-digit intensities (in 

hexadecimal) for red, green, and blue respectively. Or it may be one of the following 
predefined color names: clBlack, clMaroon, clGreen, clOlive, clNavy, clPurple, clTeal, 
clGray, clSilver, clRed, clLime, clYellow, clBlue, clFuchsia, clAqua, clWhite. 

Default value: $400000 

Description: 
This directive specifies the background color used to fill the unused space around the wizard bitmap 
(which is specified by WizardImageFile).



[Setup]: WizardSmallImageBackColor
Valid values: A value in the form of $bbggrr, where rr, gg, and bb specify the two-digit intensities (in 

hexadecimal) for red, green, and blue respectively. Or it may be one of the following 
predefined color names: clBlack, clMaroon, clGreen, clOlive, clNavy, clPurple, clTeal, 
clGray, clSilver, clRed, clLime, clYellow, clBlue, clFuchsia, clAqua, clWhite. 

Default value: clWhite 

Description: 
This directive specifies the background color used to fill the unused space around the small wizard bitmap
(which is specified by WizardSmallImageFile).



[Setup]: SourceDir
Description: 
Specifies a new source directory for the script. 

Example: SourceDir=c:\files 



[Setup]: OutputDir
Default value: Output 

Description: 
Specifies the "output" directory for the script, which is where the Setup Compiler will place the resulting 
SETUP.* files. By default, it creates a directory named "Output" under the directory containing the script 
for this. 

If OutputDir is not a fully-qualified pathname, it will be treated as being relative to SourceDir. Setting 
OutputDir to . will result in the files being placed in the source directory. 

Example: OutputDir=c:\output 



[Setup]: WizardStyle
Valid values: modern 

Default value: modern 

Description: 
Obsolete in 3.0. Inno Setup 2.x supported an alternate wizard style called "classic". Support for the 
"classic" style has been dropped in Inno Setup 3.0.



[Setup]: UninstallStyle
Valid values: modern or classic 

Default value: modern 

Description: 
If this is set to modern, Setup will use the 'modern' uninstaller style which looks exactly like the 'modern' 
wizard style. If this is set to classic, Setup will display the 'classic' uninstaller style.



[Setup]: WizardSmallImageFile
Default value: compiler:WIZMODERNSMALLIMAGE.BMP 

Description: 
Specifies the name of the bitmap file to display in the upper right corner of the wizard window. This file 
must be located in your installation's source directory when running the Setup Compiler, unless a fully 
qualified pathname is specified or the pathname is prefixed by "compiler:", in which case it looks for the 
file in the Compiler directory. 

256-color bitmaps may not display correctly in 256-color mode, since it does not handle palettes. The 
maximum size of the bitmap is 55x55 pixels.

Example: WizardSmallImageFile=mysmallimage.bmp 



[Setup]: AlwaysShowComponentsList
Valid values: yes   or   no   

Default value: yes 

Description: 
If this directive is set to yes, Setup will always show the components list for customizable setups. If this is
set to no Setup will only show the components list if the user selected a custom type from the type list.



[Setup]: AlwaysShowDirOnReadyPage
Valid values: yes   or   no   

Default value: no 

Description: 
If this directive is set to yes, Setup will always show the selected directory in the list of settings on the 
Ready to Install wizard page. If this is set to no, Setup will not show the selected directory if 
DisableDirPage is yes.



[Setup]: AlwaysShowGroupOnReadyPage
Valid values: yes   or   no   

Default value: no 

Description: 
If this directive is set to yes, Setup will always show the selected Start Menu folder name in the list of 
settings on the Ready to Install wizard page. If this is set to no, Setup will not show the selected Start 
Menu folder name if DisableProgramGroupPage is yes. 

If no Start Menu folder is going to be created by Setup, this directive is effectively ignored.



[Setup]: FlatComponentsList
Valid values: yes   or   no   

Default value: yes 

Description: 
When this directive is set to yes, Setup will use 'flat' checkboxes for the components list. Otherwise Setup
will use '3D' checkboxes.



[Setup]: ShowComponentSizes
Valid values: yes   or   no   

Default value: yes 

Description: 
When this directive is set to yes, Setup will show the size of a component in the components list. 
Depending on the largest component, Setup will display sizes in kilobytes or in megabytes.



[Setup]: ShowTasksTreeLines
Valid values: yes   or   no   

Default value: no 

Description: 
When this directive is set to yes, Setup will show 'tree lines' between parent and sub tasks.



[Setup]: ShowLanguageDialog
Valid values: yes  ,   no  , or auto 

Default value: yes 

Description: 
When set to yes and there are multiple [Languages] section entries, a Select Language dialog will be 
displayed to give the user an opportunity to override the language Setup chose by default. See the 
[Languages] section documentation for more information. 

When set to no, the dialog will never be displayed. 

When set to auto, the dialog will only be displayed if Setup does not find a language identifier match. 



[Setup]: LanguageDetectionMethod
Valid values: uilanguage, locale, none 

Default value: uilanguage 

Description: 
When set to uilanguage, Setup will determine the default language to use by checking the user's "UI 
language" (by calling GetUserDefaultUILanguage(), or on Windows versions where that function is 
unsupported, by reading the registry). This is the method that Microsoft recommends. The "UI language" 
is the language used in Windows' own dialogs. Thus, on an English edition of Windows, English will be 
the default, while on a Dutch edition of Windows, Dutch will be the default. On the MUI edition of 
Windows, the default will be the currently selected UI language.

When set to locale, Setup will determine the default language to use by calling 
GetUserDefaultLangID(). This function returns the setting of "Your locale" in Control Panel's Regional 
Options. It should however be noted that since Windows 2000 the "Your locale" option is not intended to 
affect languages; it is only documented to affect "numbers, currencies, times, and dates".

When set to none, Setup will use the first language specified in the [Languages] section as the default 
language.



[Setup]: TimeStampsInUTC
Valid values: yes   or   no   

Default value: no 

Description: 
By default, time stamps on files referenced by [Files] section entries are saved and restored as local 
times. This means that if a particular file has a time stamp of 01:00 local time at compile time, Setup will 
extract the file with a time stamp of 01:00 local time, regardless of the user's time zone setting or whether 
DST is in effect.

If TimeStampsInUTC is set to yes, time stamps will be saved and restored in UTC -- the native time 
format of Win32 and NTFS. In this mode, a file with a time stamp of 01:00 local time in New York will have
a time stamp of 06:00 local time when installed in London.



Notes on "yes" and "no"
For compatibility with previous Inno Setup versions, 1 and 0 may be used in place of yes and no, 
respectively. 

Additionally, it allows true and false to be used in place of yes and no.



Appending to Existing Uninstall Logs
When a new version of an application is installed over an existing version, instead of creating a new 
uninstall log file (unins???.dat), Setup will by default look for and append to an existing uninstall log file 
that belongs to the same application and is in the same directory. This way, when the application is 
uninstalled, changes made by all the different installations will be undone (starting with the most recent 
installation). 

The uninstaller will use the messages from the most recent installation of the application. However, there 
is an exception: if an installation was built with an older version of Inno Setup that included an older 
version of the uninstaller than the existing one on the user's system, neither the existing uninstaller nor its
messages will be replaced. In this case the uninstall log will still be appended to, though, since the file 
format is backward compatible. 

The application name displayed in the uninstaller will be the same as the value of the [Setup] section 
directive AppName from the most recent installation, unless UpdateUninstallLogAppName is set to no. 

The uninstall log-appending feature is new to Inno Setup 1.3. If you wish to disable it, set the [Setup] 
section directive UninstallLogMode. 

Note: Setup can only append to uninstall log files that were created by an Inno Setup 1.3.1 (or later) 
installation.



Same Application
"Same application" refers to two separate installations that share the same AppId setting (or if AppId is 
not set, the same AppName setting).



Source Directory
By default, the Setup Compiler expects to find files referenced in the script's [Files] section Source 
parameters, and files referenced in the [Setup] section, under the same directory the script file is 
located if they do not contain fully qualified pathnames. To specify a different source directory, create a 
SourceDir directive in the script's [Setup] section.



Using Build Number and/or Service Pack Levels
The version numbers in MinVersion and OnlyBelowVersion can include build numbers and/or 
service pack levels. Examples: 5.0.2195, 5.0sp1, 5.0.2195sp1. If a build number is not specified or 
is zero, Setup will not check the build number. If a service pack level is not specified or is zero, Setup 
interprets it as meaning "no service pack."



Windows Versions
Windows versions: 

4.0.950 Windows 95 
4.0.1111 Windows 95 OSR 2 & OSR 2.1 
4.0.1212 Windows 95 OSR 2.5 
4.1.1998 Windows 98 
4.1.2222 Windows 98 Second Edition 
4.9.3000 Windows Me

Windows NT versions: 

4.0.1381 Windows NT 4.0 
5.0.2195 Windows 2000 
5.01.2600 Windows XP 
5.02.3790 Windows Server 2003

Note that there is normally no need to specify the build numbers (i.e. you may simply use "4.1" for 
Windows 98).





Pascal Scripting: Introduction
The Pascal scripting feature (modern Delphi-like Pascal) adds lots of new possibilities to customize your 
Setup at run-time. Some examples: 

· Support for aborting setup startup under custom conditions. 

· Support for adding custom wizard pages to Setup at run-time. 

· Support for extracting and calling DLL or other files from the Pascal script before, during or after the 
installation. 

· Support for scripted constants that can do anything the normal constants, the read-from-registry, 
read-from-ini and read-from-commandline constants can do + more. 

· Support for run-time removal of types, components and/or tasks under custom conditions. 

· Support for conditional installation of [Files], [Registry], [Run] etc. entries based on custom 
conditions. 

· Lots of support functions to do from the Pascal script just about everything Inno Setup itself does/can 
do + more. 

An integrated run-time debugger to debug your custom Pascal script is also available. 

The scripting engine used by Inno Setup is Innerfuse Pascal Script by Carlo Kok from Innerfuse. Like Inno
Setup, Innerfuse Pascal Script is freely available and comes with source. See 
http://www.carlo-kok.com/ifps3.php for more information. 

See also 
Creating the [Code] section 
Event Functions 
Scripted Constants 
Check Parameters 
Examples 
Support Functions Reference 
Support Classes Reference 



Pascal Scripting: Creating the [Code] Section
The [Code] section is an optional section that specifies a Pascal script. A Pascal script can be used to 
customize Setup in many ways. Note that creating a Pascal script is not easy and requires experience 
with Inno Setup and knowledge about programming in Pascal or at least a similar programming language.

The "Code*.iss" files in the "Examples" subdirectory in your Inno Setup directory contain various example 
[Code] sections. Please study them carefully before trying to create your own Pascal script. 



Pascal Scripting: Event functions
The Pascal script can contain several event functions which are called at appropiate times. These are: 

· function InitializeSetup(): Boolean; 
return False to abort Setup 

· procedure InitializeWizard(); 
Use this event function to make changes to the wizard or wizard pages at startup. You can't use the 
InitializeSetup event function for this since at the time it is triggered, the wizard form does not 
yet exist. 

· procedure DeInitializeSetup(); 

· procedure CurStepChanged(CurStep: Integer); 

· function NextButtonClick(CurPage: Integer): Boolean; 
return False to surpress the click on the Next button 

· function BackButtonClick(CurPage: Integer): Boolean; 
return False to surpress the click on the Back button 

· function SkipCurPage(CurPage: Integer): Boolean; 
return True to skip the CurPage page 

· procedure CurPageChanged(CurPage: Integer); 

· function CheckPassword(Password: String): Boolean; 
If Setup finds the CheckPassword event function in the Pascal script, it automatically displays the 
Password page and calls CheckPassword to check passwords. Return True to accept the password 
and False to reject it. When using a password, it's important to keep in mind that since no encryption 
is used and the source code to Inno Setup is freely available, it would not be too difficult for an 
experienced individual to remove the password protection from an installation. Use this only as a 
"deterrent" to keep unauthorized people out of your installations. 

· function NeedRestart(): Boolean; 
return True to instruct Setup to prompt the user to restart the system at the end of a successful 
installation. 

· function UpdateReadyMemo(Space, NewLine, MemoUserInfoInfo, MemoDirInfo, 
MemoTypeInfo, MemoComponentsInfo, MemoGroupInfo, MemoTasksInfo: String): 
String; 
If Setup finds the UpdateReadyMemo event function in the Pascal script, it is called automatically 
when the Ready to Install wizard page becomes the active page. It should return the text to be 
displayed in the settings memo on the Ready to Install wizard page as a single string with lines 
separated by the NewLine parameter. Parameter Space contains a string with spaces. Setup uses 
this string to indent settings. The other parameters contain the (possibly empty) strings that Setup 
would have used as the setting sections. The MemoDirInfo parameter for example contains the 
string for the Selected Directory section. 

· procedure RegisterPreviousData(PreviousDataKey: Integer); 
To store user settings entered on custom wizard pages, place a RegisterPreviousData event 
function in the Pascal script and call SetPreviousData(PreviousDataKey, ...) inside it, once
per setting. 

· function CheckSerial(Serial: String): Boolean; 
If Setup finds the CheckSerial event function in the Pascal script, a serial number field will 
automatically appear on the User Info wizard page (which must be enabled using 
UserInfoPage=yes in your [Setup] section!). Return True to accept the serial number and False to 
reject it. When using serial numbers, it's important to keep in mind that since no encryption is used 



and the source code to Inno Setup is freely available, it would not be too difficult for an experienced 
individual to remove the serial number protection from an installation. Use this only as a convienience
to the end user and double check the entered serial number (stored in the {userinfoserial} 
constant) in your application. 

Here's the list of constants used by these functions: 

CurStep values 
csStart, csWizard, csCopy, csFinished, csTerminate 

CurPage values 
wpWelcome, wpLicense, wpPassword, wpInfoBefore, wpUserInfo, wpSelectDir, 
wpSelectComponents, wpSelectProgramGroup, wpSelectTasks, wpReady, 
wpPreparing, wpInstalling, wpInfoAfter, wpFinished

None of these functions are required to be present in a Pascal script. 

SkipCurPage isn't called if Setup already determined that the page should be skipped or for the 
Welcome page or for the Installing page. 



Pascal Scripting: Scripted Constants
The Pascal script can contain several functions which are called when Setup wants to know the value of a
scripted {code:...} constant. The called function has to have 1 String parameter named Default 
which is used to pass a default value. It has to return a String value. 

The syntax of a {code:...} constant is: {code:FunctionName|DefaultValue} 

· FunctionName specifies the name of the Pascal script function. 

· DefaultValue determines the string to embed if the specified function does not exist. 

· If you wish to include a comma, vertical bar ("|"), or closing brace ("}") inside the constant, you must 
escape it via "%-encoding." Replace the character with a "%" character, followed by its two-digit hex 
code. A comma is "%2c", a vertical bar is "%7c", and a closing brace is "%7d". If you want to include 
an actual "%" character, use "%25". 

· DefaultValue may include constants. Note that you do not need to escape the closing brace of a 
constant as described above; that is only necessary when the closing brace is used elsewhere. 

Example: 
DefaultDirName={code:MyConst|{pf}}\My Program 

Here is an example of a [Code] section containing the MyConst function used above. 

[Code]
program Setup; 

function MyConst(Default: String): String; 
begin 
  Result := ExpandConstant('{pf}'); 
end; 

begin 
end.

See also 
Constants 



Pascal Scripting: Check Parameters
There is one optional parameter that is supported by all sections whose entries are separated into 
parameters. This is: 

Check 

Description: 
The name of the check function in the Pascal script file that determines whether an entry has to be 
processed or not. May include one parameter that Setup should pass to the check function. This 
parameter may include constants. 

Example: 
[Files] 
Source: "MYPROG.EXE"; DestDir: "{app}"; Check: MyProgCheck 
Source: "A\MYFILE.TXT"; DestDir: "{app}"; Check: MyDirCheck({app}\A) 
Source: "B\MYFILE.TXT"; DestDir: "{app}"; Check: MyDirCheck({app}\B)

Here is an example of [Code] section containing the check functions used above. 

[Code] 
program Setup; 

var 
  MyProgChecked: Boolean; 
  MyProgCheckResult: Boolean; 

function MyProgCheck(): Boolean; 
begin 
  if not MyProgChecked then begin 
    MyProgCheckResult := MsgBox('Script.MyProg:' #13#13 'Do you want to 
install MyProg.exe?', mbConfirmation, MB_YESNO) = idYes; 
    MyProgChecked := True; 
  end; 
  Result := MyProgCheckResult; 
end; 

function MyDirCheck(DirName: String): Boolean; 
begin 
  Result := DirExists(DirName); 
end; 

begin 
end.

The check function has to have the same prototype as in the example above: no parameters or 1 String 
parameter depending on the setting of the Check parameter and a Boolean return value. If the check 
function returns True, the entry is processed otherwise it's skipped. 

Setup might call the check function several times, even if there's only one entry that uses the check 
function. If your function performs a lenghty piece of code, you can optimize it by performing the code 
only once and 'caching' the result in a global variable. 

The check function isn't called if Setup already determined from the entry's Components and/or Tasks 
parameter that it shouldn't be processed. 



Pascal Scripting: Examples
The Pascal Scripting example scripts are located in separate files. Open one of the "Code*.iss" files in the
"Examples" subdirectory in your Inno Setup directory. 





Pascal Scripting: Support Functions Reference
Here's the list of support functions that can be called from within the Pascal script. 

Note: only use CallDllProc on DLL functions that use the standard calling convention. If you want to 
pass/receive a string to or from a DLL function, use the CastStringToInteger or 
CastIntegerToString function in your Pascal script. See below for the prototype of these functions. 



Setup Info functions 

function GetCmdTail: String; 
function ParamCount: Integer; 
function ParamStr(Index: Integer): String; 

function ActiveLanguage: String; 

function SetupMessage(const ID: TSetupMessageID): String; 

function WizardDirValue: String; 
function WizardGroupValue: String; 
function WizardNoIcons: Boolean; 
function WizardSetupType(const Description: Boolean): String; 
function WizardSelectedComponents(const Descriptions: Boolean): String; 
function WizardSelectedTasks(const Descriptions: Boolean): String; 
function WizardSilent: Boolean; 

function ExpandConstant(const S: String): String; 
function ExpandConstantEx(const S: String; const CustomConst, CustomValue: 
String): String; 

function ShouldProcessEntry(const Components, Tasks: String): 
TShouldProcessEntryResult; 

function ExtractTemporaryFile(const FileName: String): Boolean; 

function GetPreviousData(const ValueName, DefaultValueData: String): 
String; 
function SetPreviousData(const PreviousDataKey: Integer; const ValueName, 
ValueData: String): Boolean; 

function Terminated: Boolean; 

System functions 

function IsAdminLoggedOn: Boolean; 
function IsPowerUserLoggedOn: Boolean; 
function UsingWinNT: Boolean; 

function InstallOnThisVersion(const MinVersion, OnlyBelowVersion: String): 
Integer; 

function GetEnv(const EnvVar: String): String; 
function GetUserNameString: String; 
function GetComputerNameString: String; 

function FindWindowByClassName(const ClassName: String): Longint; 
function FindWindowByWindowName(const WindowName: String): Longint; 
function SendMessage(const Wnd, Msg, WParam, LParam: Longint): Longint; 
function PostMessage(const Wnd, Msg, WParam, LParam: Longint): Boolean; 



function SendNotifyMessage(const Wnd, Msg, WParam, LParam: Longint): 
Boolean; 
function RegisterWindowMessage(const Name: String): Longint; 
function SendBroadcastMessage(const Msg, WParam, LParam: Longint): Longint;

function PostBroadcastMessage(const Msg, WParam, LParam: Longint): Boolean;

function SendBroadcastNotifyMessage(const Msg, WParam, LParam: Longint): 
Boolean; 

procedure CreateMutex(const Name: String); 
function CheckForMutexes(Mutexes: String): Boolean; 

String functions 

function Chr(B: Byte): Char; 
function Ord(C: Char): Byte; 
function Copy(S: String; Indx, Count: Integer): String; 
function Length(s: String): Longint; 
function Lowercase(s: string): String; 
function StrGet(S: String; I: Integer): Char; 
function StringOfChar(c: Char; I : Longint): String; 
function StrSet(c: Char; I: Integer; var s: String): Char; 
function Uppercase(s: string): String; 
procedure Delete(var S: String; Indx, Count: Integer); 
procedure Insert(Source: String; var Dest: String; Indx: Integer); 
procedure StringChange(var S: String; const FromStr, ToStr: String); 
function Pos(SubStr, S: String): Integer; 
function AddQuotes(const S: String): String; 
function RemoveQuotes(const S: String): String; 
function ConvertPercentStr(var S: String): Boolean; 

function CompareText(const S1, S2: string): Integer; 
function CompareStr(const S1, S2: string): Integer; 

function Format1(const Format, S1: String): String; 
function Format2(const Format, S1, S2: String): String; 
function Format3(const Format, S1, S2, S3: String): String; 
function Format4(const Format, S1, S2, S3, S4: String): String; 

function Trim(const S: string): String; 
function TrimLeft(const S: string): String; 
function TrimRight(const S: string): String; 

function StrToIntDef(s: string; def: Longint): Longint; 
function StrToInt(s: string): Longint; 
function IntToStr(i: Longint): String; 

function AddBackslash(const S: String): String; 
function RemoveBackslashUnlessRoot(const S: String): String; 
function RemoveBackslash(const S: String): String; 



function AddPeriod(const S: String): String; 
function ExtractFileExt(const FileName: string): String; 
function ExtractFileDir(const FileName: string): String; 
function ExtractFilePath(const FileName: string): String; 
function ExtractFileName(const FileName: string): String; 
function ExtractFileDrive(const FileName: string): String; 
function ExtractRelativePath(const BaseName, DestName: String): String; 
function ExpandFileName(const FileName: string): String; 
function ExpandUNCFileName(const FileName: string): String; 

function GetTimeString: String; 
function GetDateString: String; 
function GetDateTimeString: String; 

procedure SetLength(var S: String; L: Longint); 
procedure CharToOemBuff(var S: String); 
procedure OemToCharBuff(var S: String); 

function SysErrorMessage(ErrorCode: Integer): String; 

Array functions 

function GetArrayLength(var Arr: Array): Longint; 
procedure SetArrayLength(var Arr: Array; I: Longint); 

function Low(var U: Array): Longint; 
function High(var U: Array): Longint; 

File System functions 

function DirExists(const Name: String): Boolean; 
function FileExists(const Name: String): Boolean; 
function FileOrDirExists(const Name: String): Boolean; 
function FileSize(const Name: String; var Size: Integer): Boolean; 
function DiskFree(Drive: Char): Integer; 
function DiskSize(Drive: Char): Integer; 

function FileSearch(const Name, DirList: string): String; 
function FindFirst(const FileName: String): String; 
function FindNext: String; 

function GetCurrentDir: String; 
function SetCurrentDir(const Dir: string): Boolean; 
function GetWinDir: String; 
function GetSystemDir: String; 
function GetTempDir: String; 
function GetShellFolder(Common: Boolean; const ID: TShellFolderID): String;

function GetShortName(const LongName: String): String; 
function GenerateUniqueName(Path: String; const Extension: String): String;



function GetVersionNumbers(const Filename: String; var VersionMS, 
VersionLS: Cardinal): Boolean; 
function GetVersionNumbersString(const Filename: String; var Version: 
String): Boolean; 

File functions 

function InstExec(const Filename, Params: String; WorkingDir: String; const
WaitUntilTerminated, WaitUntilIdle: Boolean; const ShowCmd: Integer; var 
ResultCode: Integer): Boolean; 
function InstShellExec(const Filename, Params: String; WorkingDir: String; 
const ShowCmd: Integer; var ErrorCode: Integer): Boolean; 

function RenameFile(const OldName, NewName: string): Boolean; 
function ChangeFileExt(const FileName, Extension: string): String; 
function FileCopy(const ExistingFile, NewFile: String; const FailIfExists: 
Boolean): Boolean; 
function DeleteFile(const FileName: string): Boolean; 
procedure DelayDeleteFile(const Filename: String; const Tries: Integer); 

function LoadStringFromFile(const FileName: String; var S: String): 
Boolean; 
function LoadStringsFromFile(const FileName: String; var S: 
TArrayOfString): Boolean; 
function SaveStringToFile(const FileName, S: String; const Append: 
Boolean): Boolean; 
function SaveStringsToFile(const FileName: String; const S: TArrayOfString;
const Append: Boolean): Boolean; 

function CreateDir(const Dir: string): Boolean; 
procedure ForceDirectories(Dir: string); 
function RemoveDir(const Dir: string): Boolean; 
function DelTree(const Path: String; const IsDir, DeleteFiles, 
DeleteSubdirsAlso: Boolean): Boolean; 

function CreateShellLink(const Filename, Description, ShortcutTo, 
Parameters, WorkingDir, IconFilename: String; const IconIndex, ShowCmd: 
Integer): Boolean; 

procedure RegisterServer(const Filename: String; const FailCriticalErrors: 
Boolean); 
function UnregisterServer(const Filename: String; const FailCriticalErrors:
Boolean): Boolean; 
procedure RegisterTypeLibrary(const Filename: String); 
function UnregisterTypeLibrary(const Filename: String): Boolean 
procedure IncrementSharedCount(const Filename: String; const 
AlreadyExisted: Boolean); 
function DecrementSharedCount(const Filename: String): Boolean; 
procedure RestartReplace(const TempFile, DestFile: String); 
procedure UnregisterFont(const FontName, FontFilename: String); 



function ModifyPifFile(const Filename: String; const CloseOnExit: Boolean):
Boolean; 

Registry functions 

function RegKeyExists(const RootKey: Integer; const SubKeyName: String): 
Boolean; 
function RegValueExists(const RootKey: Integer; const SubKeyName, 
ValueName: String): Boolean; 

function RegGetSubkeyNames(const RootKey: Integer; const SubKeyName: 
String; var Names: TArrayOfString): Boolean; 

function RegQueryStringValue(const RootKey: Integer; const SubKeyName, 
ValueName: String; var ResultStr: String): Boolean; 
function RegQueryMultiStringValue(const RootKey: Integer; const SubKeyName,
ValueName: String; var ResultStr: String): Boolean; 
function RegQueryDWordValue(const RootKey: Integer; const SubKeyName, 
ValueName: String; var ResultDWord: Cardinal): Boolean; 
function RegQueryBinaryValue(const RootKey: Integer; const SubKeyName, 
ValueName: String; var ResultStr: String): Boolean; 

function RegWriteStringValue (const RootKey: Integer; const SubKeyName, 
ValueName, Value: String): Boolean; 
function RegWriteMultiStringValue (const RootKey: Integer; const 
SubKeyName, ValueName, Value: String): Boolean; 
function RegWriteDWordValue (const RootKey: Integer; const SubKeyName, 
ValueName: String; const Value: Cardinal): Boolean; 
function RegWriteBinaryValue (const RootKey: Integer; const SubKeyName, 
ValueName, Value: String): Boolean; 

INI File functions 

function IniKeyExists(const Section, Key, Filename: String): Boolean; 
function IsIniSectionEmpty(const Section, Filename: String): Boolean; 

function GetIniBool(const Section, Key: String; const Default: Boolean; 
const Filename: String): Boolean 
function GetIniInt(const Section, Key: String; const Default, Min, Max: 
Longint; const Filename: String): Longint; 
function GetIniString(const Section, Key, Default, Filename: String): 
String; 

function SetIniBool(const Section, Key: String; const Value: Boolean; const
Filename: String): Boolean; 
function SetIniInt(const Section, Key: String; const Value: Longint; const 
Filename: String): Boolean; 
function SetIniString(const Section, Key, Value, Filename: String): 
Boolean; 

procedure DeleteIniSection(const Section, Filename: String); 
procedure DeleteIniEntry(const Section, Key, Filename: String); 



Custom Wizard Page functions 

procedure ScriptDlgPageSetCaption(const Caption: String); 
procedure ScriptDlgPageSetSubCaption1(const SubCaption1: String); 
procedure ScriptDlgPageSetSubCaption2(const SubCaption2: String); 
procedure ScriptDlgPageShowBackButton(const Show: Boolean); 

procedure ScriptDlgPageOpen; 

function InputDir(const AppendDir: String; var Value: String): Boolean; 
function InputFile(const Prompt, Filter, DefaultExtension: string; var 
Value: string): Boolean; 
function InputFileArray(const Prompts, Filters, DefaultExtensions: 
TArrayOfString; var Values: TArrayOfString): Boolean; 
function InputOptionArray(const Prompts: TArrayOfString; var Values: 
TArrayOfString; const Exclusive, ListBox: Boolean): Boolean; 
function InputOption(const Prompt: String; var Value: String): Boolean; 
function InputQuery(const Prompt: String; var Value: String): Boolean; 
function InputQueryArray(const Prompts: TArrayOfString; var Values: 
TArrayOfString): Boolean; 
function InputQueryArrayEx(const Prompts: TArrayOfString; const 
PasswordChars: TArrayOfChar; var Values: TArrayOfString): Boolean; 
function OutputMsg(const Msg: String; const WaitUntilClick: Boolean): 
Boolean; 
function OutputMsgMemo(const Prompt, Msg: String): Boolean; 
procedure OutputProgress(const Msg1, Msg2: String; const Progress, 
MaxProgress: Longint); 
function ScriptDlgPageProcessCustom(): Boolean; 
procedure ScriptDlgPageClearCustom(); 

procedure ScriptDlgPageClose(const FullRestore: Boolean); 

Dialog functions 

function MsgBox(const Text: String; const Typ: TMsgBoxType; const Buttons: 
Integer): Integer; 
function GetOpenFileName(const Prompt: String; var FileName: String; const 
InitialDirectory, Filter, DefaultExtension: String): Boolean; 
function BrowseForFolder(const Prompt: String; var Directory: String): 
Boolean; 
function ExitSetupMsgBox: Boolean; 

Explicit DLL functions 

function LoadDLL(const DLLName: String; var ErrorCode: Integer): Longint; 
function CallDLLProc(const DLLHandle: Longint; const ProcName: String; 
const Param1, Param2: Longint; var Result: Longint): Boolean; 
function FreeDLL(const DLLHandle: Longint): Boolean; 

function CastStringToInteger(var S: String): Longint; 
function CastIntegerToString(const L: Longint): String; 



Other functions 

procedure Sleep(const Milliseconds: LongInt); 
function Random(const Range: Integer): Integer; 
procedure Beep; 

procedure BringToFrontAndRestore; 

Here's the list of constants used by these functions: 

CurStep values 
csStart, csWizard, csCopy, csFinished, csTerminate 

CurPage values 
wpWelcome, wpLicense, wpPassword, wpInfoBefore, wpUserInfo, wpSelectDir, 
wpSelectComponents, wpSelectProgramGroup, wpSelectTasks, wpReady, 
wpPreparing, wpInstalling, wpInfoAfter, wpFinished 

TMsgBoxType 
mbInformation, mbConfirmation, mbError, mbCriticalError 

MsgBox - Buttons flags 
MB_OK, MB_OKCANCEL, MB_ABORTRETRYIGNORE, MB_YESNOCANCEL, MB_YESNO, 
MB_RETRYCANCEL, MB_DEFBUTTON1, MB_DEFBUTTON2, MB_DEFBUTTON3, 
MB_SETFOREGROUND 

MsgBox - return values 
IDOK, IDCANCEL, IDABORT, IDRETRY, IDIGNORE, IDYES, IDNO 

TGetShellFolderID 
sfDesktop, sfStartMenu, sfPrograms, sfStartup, sfSendTo, sfFonts, 
sfAppData, sfDocs, sfTemplates, sfFavorites, sfLocalAppData 

Reg* - RootKey values 
HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, HKEY_USERS, 
HKEY_PERFORMANCE_DATA, HKEY_CURRENT_CONFIG, HKEY_DYN_DATA, 
HKCR, HKCU, HKLM, HKU, HKCC 

TShouldProcessEntryResult 
srNo, srYes, srUnknown 

InstallOnThisVersion - return values 
irInstall, irNotOnThisPlatform, irVerTooLow, irVerTooHigh, irInvalid 

TSetupMessageID 
Use 'msg' + the message name. Example: SetupMessage(msgSetupAppTitle) 

Inst*Exec - ShowCmd values 
SW_SHOWNORMAL, SW_SHOWMAXIMIZED, SW_SHOWMINNOACTIVE, SW_HIDE 





Support function: GetCmdTail 
Prototype: 
function GetCmdTail: String; 

Description: 
Returns all command line parameters passed to Setup as a single string. 

Remarks: 
none 



Support function: ParamCount 
Prototype: 
function ParamCount: Integer; 

Description: 
Returns the number of command line parameters passed to Setup. 

Remarks: 
none 



Support function: ParamStr 
Prototype: 
function ParamStr(Index: Integer): String; 

Description: 
Returns the Index-th command line parameter passed to Setup. 

Remarks: 
none 



Support function: ActiveLanguage 
Prototype: 
function ActiveLanguage: String; 

Description: 
Returns the name of the active language. 

Remarks: 
none 



Support function: SetupMessage 
Prototype: 
function SetupMessage(const ID: TSetupMessageID): String; 

Description: 
Returns the value of the specified message. 

Remarks: 
none 



Support function: WizardDirValue 
Prototype: 
function WizardDirValue: String; 

Description: 
Returns the application directory selected by the user. 

Remarks: 
none 



Support function: WizardGroupValue 
Prototype: 
function WizardGroupValue: String; 

Description: 
Returns the start menu folder selected by the user. 

Remarks: 
none 



Support function: WizardNoIcons 
Prototype: 
function WizardNoIcons: Boolean; 

Description: 
Returns the 'don't create any icons' setting selected by the user. 

Remarks: 
none 



Support function: WizardSetupType 
Prototype: 
function WizardSetupType(const Description: Boolean): String; 

Description: 
Returns the name or description of the setup type selected by the user. 

Remarks: 
none 



Support function: WizardSelectedComponents 
Prototype: 
function WizardSelectedComponents(const Descriptions: Boolean): String; 

Description: 
Returns a comma-separated list of names or descriptions of the components selected by the user. 

Remarks: 
none 



Support function: WizardSelectedTasks 
Prototype: 
function WizardSelectedTasks(const Descriptions: Boolean): String; 

Description: 
Returns a comma-separated list of names or descriptions of the tasks selected by the user. 

Remarks: 
none 



Support function: WizardSilent 
Prototype: 
function WizardSilent: Boolean; 

Description: 
Returns True if Setup is running silently, False otherwise. 

Remarks: 
none 



Support function: ExpandConstant 
Prototype: 
function ExpandConstant(const S: String): String; 

Description: 
Changes all constants in S to their values. For example, ExpandConstant('{srcexe}') is changed to the 
filename of Setup. 

Remarks: 
none 



Support function: ExpandConstantEx 
Prototype: 
function ExpandConstantEx(const S: String; const CustomConst, CustomValue: 
String): String; 

Description: 
Changes all constants in S to their values. Additionally, any constant equal to CustomConst will be 
changed to CustomValue. 

Remarks: 
none 



Support function: ShouldProcessEntry 
Prototype: 
function ShouldProcessEntry(const Components, Tasks: String): 
TShouldProcessEntryResult; 

Description: 
Returns srYes if an entry with the specified Components and Tasks parameters should be installed. 

Remarks: 
none 



Support function: ExtractTemporaryFile 
Prototype: 
function ExtractTemporaryFile(const FileName: String): Boolean; 

Description: 
Extracts the specified file from the [Files] section to a temporary directory. To find the location of the 
temporary directory use ExpandConstant('{tmp}'). 
 
The extracted files are automatically deleted when Setup exits. 
 
Returns True if the file was extracted successfully and False if it wasn't extracted successfully or if the file 
wasn't found or if the file was found be couldn't be processed because of its 'MinVersion' and/or 
'OnlyBelowVersion' parameters. 

Remarks: 
Use 'CopyMode: dontcopy' in the [Files] section to tell Setup to skip the file during the normal file copying 
stage. 



Support function: GetPreviousData 
Prototype: 
function GetPreviousData(const ValueName, DefaultValueData: String): String; 

Description: 
Gets a value that was previously stored using SetPreviousData. 

Remarks: 
none 



Support function: SetPreviousData 
Prototype: 
function SetPreviousData(const PreviousDataKey: Integer; const ValueName, 
ValueData: String): Boolean; 

Description: 
Sets a value that can be restored later using GetPreviousData. Call SetPreviousData inside a 
RegisterPreviousData event function. 

Remarks: 
none 



Support function: Terminated 
Prototype: 
function Terminated: Boolean; 

Description: 
Returns True if Setup is terminating, False otherwise. 

Remarks: 
none 



Support function: IsAdminLoggedOn 
Prototype: 
function IsAdminLoggedOn: Boolean; 

Description: 
Returns True if an administrator is logged onto the system. Always returns True on Windows 95/98/ME. 

Remarks: 
none 



Support function: IsPowerUserLoggedOn 
Prototype: 
function IsPowerUserLoggedOn: Boolean; 

Description: 
Returns True if a Power User is logged onto the system. Always returns True on Windows 95/98/ME. 

Remarks: 
none 



Support function: UsingWinNT 
Prototype: 
function UsingWinNT: Boolean; 

Description: 
Returns True if system is running any version of Windows NT. 

Remarks: 
none 



Support function: InstallOnThisVersion 
Prototype: 
function InstallOnThisVersion(const MinVersion, OnlyBelowVersion: String): 
Integer; 

Description: 
Returns irInstall if an entry with the specified MinVersion and OnlyBelowVersion parameters should be 
installed. 

Remarks: 
none 



Support function: GetEnv 
Prototype: 
function GetEnv(const EnvVar: String): String; 

Description: 
Gets the value of the specified environment variable. 

Remarks: 
none 



Support function: GetUserNameString 
Prototype: 
function GetUserNameString: String; 

Description: 
Retrieves the name of the user currently logged onto the system. 

Remarks: 
none 



Support function: GetComputerNameString 
Prototype: 
function GetComputerNameString: String; 

Description: 
Retrieves the computer name of the current system. 

Remarks: 
none 



Support function: FindWindowByClassName 
Prototype: 
function FindWindowByClassName(const ClassName: String): Longint; 

Description: 
Retrieves a handle to the top-level window whose class name match the specified string. This function 
does not search child windows. This function does not perform a case-sensitive search. 

Remarks: 
none 



Support function: FindWindowByWindowName 
Prototype: 
function FindWindowByWindowName(const WindowName: String): Longint; 

Description: 
Retrieves a handle to the top-level window whose window name match the specified string. This function 
does not search child windows. This function does not perform a case-sensitive search. 

Remarks: 
none 



Support function: SendMessage 
Prototype: 
function SendMessage(const Wnd, Msg, WParam, LParam: Longint): Longint; 

Description: 
Sends the specified message to the specified window. Does not return until the window procedure has 
processed the message. 

Remarks: 
none 



Support function: PostMessage 
Prototype: 
function PostMessage(const Wnd, Msg, WParam, LParam: Longint): Boolean; 

Description: 
Posts the specified message to the specified window, returning immediately. 

Remarks: 
none 



Support function: SendNotifyMessage 
Prototype: 
function SendNotifyMessage(const Wnd, Msg, WParam, LParam: Longint): Boolean; 

Description: 
not yet available 

Remarks: 
none 



Support function: RegisterWindowMessage 
Prototype: 
function RegisterWindowMessage(const Name: String): Longint; 

Description: 
The RegisterWindowMessage function defines a new window message that is guaranteed to be unique 
throughout the system. The returned message value can be used when calling the 
SendBroadcastMessage or PostBroadcastMessage function. 

Remarks: 
none 



Support function: SendBroadcastMessage 
Prototype: 
function SendBroadcastMessage(const Msg, WParam, LParam: Longint): Longint; 

Description: 
Sends the specified message to top-level windows in the system. Does not return until all window 
procedure have processed the message. 
The specified message must be unique. Use RegisterWindowMessage to get such a message. 

Remarks: 
none 



Support function: PostBroadcastMessage 
Prototype: 
function PostBroadcastMessage(const Msg, WParam, LParam: Longint): Boolean; 

Description: 
Posts the specified message to top-level windows in the system, returning immediately. 
The specified message must be unique. Use RegisterWindowMessage to get such a message. 

Remarks: 
none 



Support function: SendBroadcastNotifyMessage 
Prototype: 
function SendBroadcastNotifyMessage(const Msg, WParam, LParam: Longint): 
Boolean; 

Description: 
not yet available 

Remarks: 
none 



Support function: CreateMutex 
Prototype: 
procedure CreateMutex(const Name: String); 

Description: 
Creates a mutex with the specified name. 

Remarks: 
none 



Support function: CheckForMutexes 
Prototype: 
function CheckForMutexes(Mutexes: String): Boolean; 

Description: 
Returns True if any of the mutexes in the comma-separated Mutexes string exist. 

Remarks: 
none 



Support function: Chr 
Prototype: 
function Chr(B: Byte): Char; 

Description: 
Returns the character with the specified ordinal value. 

Remarks: 
none 



Support function: Ord 
Prototype: 
function Ord(C: Char): Byte; 

Description: 
Returns the ordinal value of the specified character. 

Remarks: 
none 



Support function: Copy 
Prototype: 
function Copy(S: String; Indx, Count: Integer): String; 

Description: 
Returns a string containing Count characters starting with at S[Index]. 
If Index is larger than the length of S, Copy returns an empty string. 
If Count specifies more characters than are available, the only the characters from S[Index] to the end of 
S are returned. 

Remarks: 
none 



Support function: Length 
Prototype: 
function Length(s: String): Longint; 

Description: 
Returns the length of the specified string. 

Remarks: 
none 



Support function: Lowercase 
Prototype: 
function Lowercase(s: string): String; 

Description: 
Returns a string with the same text as the string passed in S, but with all letters converted to lowercase. 

Remarks: 
none 



Support function: StrGet 
Prototype: 
function StrGet(S: String; I: Integer): Char; 

Description: 
Returns the I-th character in string S. 

Remarks: 
none 



Support function: StringOfChar 
Prototype: 
function StringOfChar(c: Char; I : Longint): String; 

Description: 
Returns a string of length I with all characters set to character C. 

Remarks: 
none 



Support function: StrSet 
Prototype: 
function StrSet(c: Char; I: Integer; var s: String): Char; 

Description: 
Set the I-th character in string S to character C. 

Remarks: 
none 



Support function: Uppercase 
Prototype: 
function Uppercase(s: string): String; 

Description: 
Returns a string containing the same text as S, but with all letters converted to uppercase. 

Remarks: 
none 



Support function: Delete 
Prototype: 
procedure Delete(var S: String; Indx, Count: Integer); 

Description: 
Removes a substring of Count characters from string S starting at S[Index]. 
If Index is larger than the length of S, no characters are deleted. If Count specifies more characters than 
remain starting at the S[Index], Delete removes the rest of the string. 

Remarks: 
none 



Support function: Insert 
Prototype: 
procedure Insert(Source: String; var Dest: String; Indx: Integer); 

Description: 
Merges Source into S at the position S[index]. 

Remarks: 
none 



Support function: StringChange 
Prototype: 
procedure StringChange(var S: String; const FromStr, ToStr: String); 

Description: 
Change all occurances in S of FromStr to ToStr. 

Remarks: 
none 



Support function: Pos 
Prototype: 
function Pos(SubStr, S: String): Integer; 

Description: 
Searches for Substr within S and returns an integer value that is the index of the first character of Substr 
within S. 
If Substr is not found, Pos returns zero. 

Remarks: 
none 



Support function: AddQuotes 
Prototype: 
function AddQuotes(const S: String): String; 

Description: 
Adds a quote (") character to the left and right sides of the string if the string contains a space and it didn't
have quotes already. This is primarily used when spawning another process with a long filename as one 
of the parameters. 

Remarks: 
none 



Support function: RemoveQuotes 
Prototype: 
function RemoveQuotes(const S: String): String; 

Description: 
Opposite of AddQuotes; removes any quotes around the string. 

Remarks: 
none 



Support function: ConvertPercentStr 
Prototype: 
function ConvertPercentStr(var S: String): Boolean; 

Description: 
Expands all %-encoded characters in the string (see RFC 2396). Returns True if all were successfully 
expanded. 

Remarks: 
none 



Support function: CompareText 
Prototype: 
function CompareText(const S1, S2: string): Integer; 

Description: 
Compares the strings S1 and S2 and returns 0 if they are equal. If S1 is greater than S2, CompareText 
returns an integer greater than 0. If S1 is less than S2, CompareText returns an integer less than 0. The 
CompareText function is not case sensitive. 

Remarks: 
none 



Support function: CompareStr 
Prototype: 
function CompareStr(const S1, S2: string): Integer; 

Description: 
Compares S1 to S2, with case-sensitivity. The return value is less than 0 if S1 is less than S2, 0 if S1 
equals S2, or greater than 0 if S1 is greater than S2. 

Remarks: 
none 



Support function: Format1 
Prototype: 
function Format1(const Format, S1: String): String; 

Description: 
Returns the Format string with the first %s in the Format string replaced by the S1 string. 

Remarks: 
none 



Support function: Format2 
Prototype: 
function Format2(const Format, S1, S2: String): String; 

Description: 
Returns the Format string with the first %s in the Format string replaced by the S1 string and the second 
%s replaced by the S2 string. 

Remarks: 
none 



Support function: Format3 
Prototype: 
function Format3(const Format, S1, S2, S3: String): String; 

Description: 
Returns the Format string with the first %s in the Format string replaced by the S1 string, the second %s 
replaced by the S2 string, etc. 

Remarks: 
none 



Support function: Format4 
Prototype: 
function Format4(const Format, S1, S2, S3, S4: String): String; 

Description: 
Returns the Format string with the first %s in the Format string replaced by the S1 string, the second %s 
replaced by the S2 string, etc. 

Remarks: 
none 



Support function: Trim 
Prototype: 
function Trim(const S: string): String; 

Description: 
Trims leading and trailing spaces and control characters from the given string S. 

Remarks: 
none 



Support function: TrimLeft 
Prototype: 
function TrimLeft(const S: string): String; 

Description: 
Trims leading spaces and control characters from the given string S. 

Remarks: 
none 



Support function: TrimRight 
Prototype: 
function TrimRight(const S: string): String; 

Description: 
Trims trailing spaces and control characters from the given string S. 

Remarks: 
none 



Support function: StrToIntDef 
Prototype: 
function StrToIntDef(s: string; def: Longint): Longint; 

Description: 
The StrToInt function converts the string passed in S into a number. If S does not represent a valid 
number, StrToInt returns the number passed in Def. 

Remarks: 
none 



Support function: StrToInt 
Prototype: 
function StrToInt(s: string): Longint; 

Description: 
The StrToInt function converts the string passed in S into a number. 

Remarks: 
Use of StrToIntDef instead of StrToInt is recommended. 



Support function: IntToStr 
Prototype: 
function IntToStr(i: Longint): String; 

Description: 
The IntToStr function converts an integer into a string containing the decimal representation of that 
number. 

Remarks: 
none 



Support function: AddBackslash 
Prototype: 
function AddBackslash(const S: String): String; 

Description: 
Adds a trailing backslash to the string, if one wasn't there already. 
But if S is an empty string, the function returns an empty string. 

Remarks: 
none 



Support function: RemoveBackslashUnlessRoot 
Prototype: 
function RemoveBackslashUnlessRoot(const S: String): String; 

Description: 
Removes the trailing backslash from the string, if one exists and does not specify a root directory of a 
drive (i.e. "C:\"). 

Remarks: 
none 



Support function: RemoveBackslash 
Prototype: 
function RemoveBackslash(const S: String): String; 

Description: 
Removes the trailing backslash from the string, if one exists 

Remarks: 
none 



Support function: AddPeriod 
Prototype: 
function AddPeriod(const S: String): String; 

Description: 
Adds a trailing period to the string, if one wasn't there already. 

Remarks: 
none 



Support function: ExtractFileExt 
Prototype: 
function ExtractFileExt(const FileName: string): String; 

Description: 
Extracts the extension part of the given file name. The resulting string includes the period character that 
separates the name and extension parts. The resulting string is empty if the given filename has no 
extension. 

Remarks: 
none 



Support function: ExtractFileDir 
Prototype: 
function ExtractFileDir(const FileName: string): String; 

Description: 
Extracts the drive and directory parts of the given file name. The resulting string is empty if FileName 
contains no drive and directory parts. 

Remarks: 
none 



Support function: ExtractFilePath 
Prototype: 
function ExtractFilePath(const FileName: string): String; 

Description: 
Extracts the drive and directory parts of the given file name. The resulting string is the rightmost 
characters of FileName, up to and including the colon or backslash that separates the path information 
from the name and extension. The resulting string is empty if FileName contains no drive and directory 
parts. 

Remarks: 
none 



Support function: ExtractFileName 
Prototype: 
function ExtractFileName(const FileName: string): String; 

Description: 
Extracts the name and extension parts of the given file name. The resulting string is the leftmost 
characters of FileName, starting with the first character after the colon or backslash that separates the 
path information from the name and extension. The resulting string is equal to FileName if FileName 
contains no drive and directory parts. 

Remarks: 
none 



Support function: ExtractFileDrive 
Prototype: 
function ExtractFileDrive(const FileName: string): String; 

Description: 
Returns a string containing the 'drive' portion of a fully qualified path name for the file passed in the 
FileName. For file names with drive letters, the resulting string is in the form '<drive>:'. For file names with
a UNC path the resulting string is in the form '\\<servername>\<sharename>'. If the given path contains 
neither style of path prefix, the result is an empty string. 

Remarks: 
none 



Support function: ExtractRelativePath 
Prototype: 
function ExtractRelativePath(const BaseName, DestName: String): String; 

Description: 
Convert a fully qualified path name into a relative path name. The DestName parameter specifies file 
name (including path) to be converted.    BaseName is the fully qualified name of the base directory to 
which the returned path name should be relative. 
 
ExtractRelativePath strips out common path directories and inserts '..\' for each level up from the 
BaseName. 

Remarks: 
none 



Support function: ExpandFileName 
Prototype: 
function ExpandFileName(const FileName: string): String; 

Description: 
Returns a string containing a fully qualified path name for the file passed in the FileName. A fully qualified 
path name includes the drive letter and any directory and subdirectories in addition to the file name and 
extension. 

Remarks: 
none 



Support function: ExpandUNCFileName 
Prototype: 
function ExpandUNCFileName(const FileName: string): String; 

Description: 
Returns a string containing a fully qualified path name for the file passed in the FileName. A fully qualified 
path name includes the drive portion of the filename in the UNC format '\\<servername>\<sharename>' if 
the drive letter is mapped to a network resource instead of a local drive and any directory and 
subdirectories in addition to the file name and extension. 

Remarks: 
none 



Support function: GetTimeString 
Prototype: 
function GetTimeString: String; 

Description: 
Returns the current time as a string. 

Remarks: 
none 



Support function: GetDateString 
Prototype: 
function GetDateString: String; 

Description: 
Returns the current date as a string. 

Remarks: 
none 



Support function: GetDateTimeString 
Prototype: 
function GetDateTimeString: String; 

Description: 
Returns the current date and time as a string. 

Remarks: 
none 



Support function: SetLength 
Prototype: 
procedure SetLength(var S: String; L: Longint); 

Description: 
Sets the length of a string. 

Remarks: 
none 



Support function: CharToOemBuff 
Prototype: 
procedure CharToOemBuff(var S: String); 

Description: 
Translates an ANSI string to a string with characters from the OEM-defined character set. 

Remarks: 
none 



Support function: OemToCharBuff 
Prototype: 
procedure OemToCharBuff(var S: String); 

Description: 
Translates a string with characters from the OEM-defined character set into an ANSI string. 

Remarks: 
none 



Support function: SysErrorMessage 
Prototype: 
function SysErrorMessage(ErrorCode: Integer): String; 

Description: 
Returns an error message string that corresponds to the given operating system error code. 

Remarks: 
none 



Support function: GetArrayLength 
Prototype: 
function GetArrayLength(var Arr: Array): Longint; 

Description: 
Gets the length of an array. 

Remarks: 
none 



Support function: SetArrayLength 
Prototype: 
procedure SetArrayLength(var Arr: Array; I: Longint); 

Description: 
Sets the length of an array. Always call SetArrayLength before accessing the elements in an array. 

Remarks: 
none 



Support function: Low 
Prototype: 
function Low(var U: Array): Longint; 

Description: 
Returns the lowest value within the range of the index type of the array 

Remarks: 
none 



Support function: High 
Prototype: 
function High(var U: Array): Longint; 

Description: 
Returns the highest value within the range of the index type of the array 

Remarks: 
none 



Support function: DirExists 
Prototype: 
function DirExists(const Name: String): Boolean; 

Description: 
Returns True if the specified directory name exists. The specified name may include a trailing backslash. 

Remarks: 
none 



Support function: FileExists 
Prototype: 
function FileExists(const Name: String): Boolean; 

Description: 
Returns True if the specified file exists. 

Remarks: 
none 



Support function: FileOrDirExists 
Prototype: 
function FileOrDirExists(const Name: String): Boolean; 

Description: 
Returns True if the specified directory or file name exists. The specified name may include a trailing 
backslash. 

Remarks: 
none 



Support function: FileSize 
Prototype: 
function FileSize(const Name: String; var Size: Integer): Boolean; 

Description: 
Sets Size to the size of the specified file in bytes. Returns True if the file size was set successfully and 
False otherwise. 

Remarks: 
none 



Support function: DiskFree 
Prototype: 
function DiskFree(Drive: Char): Integer; 

Description: 
Returns the number of free bytes on the specified drive. DiskFree returns -1 if the drive is invalid. 
 
Does not support large drives. 

Remarks: 
none 



Support function: DiskSize 
Prototype: 
function DiskSize(Drive: Char): Integer; 

Description: 
Returns the size in bytes on the specified drive. DiskFree returns -1 if the drive is invalid. 
 
Does not support large drives. 

Remarks: 
none 



Support function: FileSearch 
Prototype: 
function FileSearch(const Name, DirList: string): String; 

Description: 
Searches through the directories passed in DirList for a file named Name. DirList should be directory 
names separated by semicolons. If FileSearch locates a file matching Name, it returns a string containing 
a fully-qualified path name for that file. If no matching file exists, FileSearch returns an empty string. 

Remarks: 
none 



Support function: FindFirst 
Prototype: 
function FindFirst(const FileName: String): String; 

Description: 
Returns the first file found in the directory specified by FileName. FileName may include wildcards. 

Remarks: 
none 



Support function: FindNext 
Prototype: 
function FindNext: String; 

Description: 
Returns the next file found in the directory after a call to FindFirst. 

Remarks: 
none 



Support function: GetCurrentDir 
Prototype: 
function GetCurrentDir: String; 

Description: 
Returns a string containing the name of the current directory. 

Remarks: 
none 



Support function: SetCurrentDir 
Prototype: 
function SetCurrentDir(const Dir: string): Boolean; 

Description: 
Sets the current directory. The return value is True if the current directory was successfully changed, or 
False if an error occurred. 

Remarks: 
none 



Support function: GetWinDir 
Prototype: 
function GetWinDir: String; 

Description: 
Returns fully qualified path of the Windows directory. Only includes a trailing backslash if the Windows 
directory is the root directory. 

Remarks: 
none 



Support function: GetSystemDir 
Prototype: 
function GetSystemDir: String; 

Description: 
Returns fully qualified path of the Windows System directory. Only includes a trailing backslash if the 
Windows System directory is the root directory. 

Remarks: 
none 



Support function: GetTempDir 
Prototype: 
function GetTempDir: String; 

Description: 
Returns fully qualified path of the temporary directory, with trailing backslash. This does not use the 
Win32 function GetTempPath, due to platform differences. 
Gets the temporary file path as follows: 
1. The path specified by the TMP environment variable. 
2. The path specified by the TEMP environment variable, if TMP is not defined or if TMP specifies a 
directory that does not exist. 
3. The Windows directory, if both TMP and TEMP are not defined or specify nonexistent directories. 

Remarks: 
none 



Support function: GetShellFolder 
Prototype: 
function GetShellFolder(Common: Boolean; const ID: TShellFolderID): String; 

Description: 
Gets the location of the specified shell folder. Returns the 'common' version of the shell folder location if 
Common is True and the user has administrative privileges. 

Remarks: 
none 



Support function: GetShortName 
Prototype: 
function GetShortName(const LongName: String): String; 

Description: 
Returns the short version of the specified long filename. If the short version of the long filename is not 
found, the long filename is returned. 

Remarks: 
none 



Support function: GenerateUniqueName 
Prototype: 
function GenerateUniqueName(Path: String; const Extension: String): String; 

Description: 
Generates a unique filename for a file in the specified path with the specified extension. 

Remarks: 
none 



Support function: GetVersionNumbers 
Prototype: 
function GetVersionNumbers(const Filename: String; var VersionMS, VersionLS: 
Cardinal): Boolean; 

Description: 
Gets the file version numbers of the specified file. 

Remarks: 
none 



Support function: GetVersionNumbersString 
Prototype: 
function GetVersionNumbersString(const Filename: String; var Version: String):
Boolean; 

Description: 
Gets the file version numbers of the specified file, as a string. 

Remarks: 
none 



Support function: InstExec 
Prototype: 
function InstExec(const Filename, Params: String; WorkingDir: String; const 
WaitUntilTerminated, WaitUntilIdle: Boolean; const ShowCmd: Integer; var 
ResultCode: Integer): Boolean; 

Description: 
Executes the specified executable file. Use WaitUntilTerminated and WaitUntilIdle to specify whether 
InstExec should return immediately or should wait until the executed file is termimated or is idle. Returns 
True if the specified file was executed successfully, False otherwise. If True is returned and 
WaitUntilTerminated is True then ResultCode return the exit code of the executed file. If False is returned 
then ResultCode specifies the error that occurred. Use SysErrorMessage(ResultCode) to get a 
description of the error. 

Remarks: 
none 



Support function: InstShellExec 
Prototype: 
function InstShellExec(const Filename, Params: String; WorkingDir: String; 
const ShowCmd: Integer; var ErrorCode: Integer): Boolean; 

Description: 
Opens the specified file, for example an executable file or a document file. Returns True if the specified 
file was opened successfully, False otherwise. If False is returned then ErrorCode specifies the error that 
occurred. Use SysErrorMessage(ErrorCode) to get a description of the error. 

Remarks: 
none 



Support function: RenameFile 
Prototype: 
function RenameFile(const OldName, NewName: string): Boolean; 

Description: 
Attempts to change the name of the file specified by OldFile to NewFile. If the operation succeeds, 
RenameFile returns True. If it cannot rename the file (for example, if a file called NewName already 
exists), it returns False. 

Remarks: 
none 



Support function: ChangeFileExt 
Prototype: 
function ChangeFileExt(const FileName, Extension: string): String; 

Description: 
Takes the file name passed in FileName and changes the extension of the file name to the extension 
passed in Extension. 

Remarks: 
none 



Support function: FileCopy 
Prototype: 
function FileCopy(const ExistingFile, NewFile: String; const FailIfExists: 
Boolean): Boolean; 

Description: 
Copies ExistingFile to NewFile, preserving time stamp and file attributes. 
If FailIfExists is True it will fail if NewFile already exists, otherwise it will overwrite it. 
Returns True if successful; False if not. 

Remarks: 
none 



Support function: DeleteFile 
Prototype: 
function DeleteFile(const FileName: string): Boolean; 

Description: 
Erases the file named by FileName from the disk. 
If the file cannot be deleted or does not exist, the function returns False. 

Remarks: 
none 



Support function: DelayDeleteFile 
Prototype: 
procedure DelayDeleteFile(const Filename: String; const Tries: Integer); 

Description: 
Attempts to delete Filename, retrying up to Tries times if the file is in use. It delays 250 msec between 
tries. 

Remarks: 
none 



Support function: LoadStringFromFile 
Prototype: 
function LoadStringFromFile(const FileName: String; var S: String): Boolean; 

Description: 
Loads the specified binary or text file into the specified string. Returns True if successful, False otherwise.

Remarks: 
none 



Support function: LoadStringsFromFile 
Prototype: 
function LoadStringsFromFile(const FileName: String; var S: TArrayOfString): 
Boolean; 

Description: 
Loads the specified text file into the specified string array. Returns True if successful, False otherwise. 

Remarks: 
none 



Support function: SaveStringToFile 
Prototype: 
function SaveStringToFile(const FileName, S: String; const Append: Boolean): 
Boolean; 

Description: 
Saves or appends the specified string to the specified file. Returns True if successful, False otherwise. 

Remarks: 
If Append is True and the specified file does not exist, a new file is created. 



Support function: SaveStringsToFile 
Prototype: 
function SaveStringsToFile(const FileName: String; const S: TArrayOfString; 
const Append: Boolean): Boolean; 

Description: 
Saves or appends the specified string array to the specified file. Returns True if successful, False 
otherwise. 

Remarks: 
If Append is True and the specified file does not exist, a new file is created. 



Support function: CreateDir 
Prototype: 
function CreateDir(const Dir: string): Boolean; 

Description: 
Creates a new directory. The return value is True if a new directory was successfully created, or False if 
an error occurred. 

Remarks: 
none 



Support function: ForceDirectories 
Prototype: 
procedure ForceDirectories(Dir: string); 

Description: 
Creates all the directories along the specified directory path all at once. If the first directories in the path 
do exist, but the latter ones don't, ForceDirectories creates just the ones that don't exist. 

Remarks: 
none 



Support function: RemoveDir 
Prototype: 
function RemoveDir(const Dir: string): Boolean; 

Description: 
Deletes an existing empty directory. The return value is True if a new directory was successfully deleted, 
or False if an error occurred. 

Remarks: 
none 



Support function: DelTree 
Prototype: 
function DelTree(const Path: String; const IsDir, DeleteFiles, 
DeleteSubdirsAlso: Boolean): Boolean; 

Description: 
Deletes the specified directory including all files and subdirectories in it (including those with hidden, 
system, and read-only attributes). Returns True if it was able to successfully remove everything. 

Remarks: 
none 



Support function: CreateShellLink 
Prototype: 
function CreateShellLink(const Filename, Description, ShortcutTo, Parameters, 
WorkingDir, IconFilename: String; const IconIndex, ShowCmd: Integer): Boolean;
Description: 
Creates a lnk file named Filename, with a description of Description, with a HotKey hotkey, which points 
to ShortcutTo. 

Remarks: 
none 



Support function: RegisterServer 
Prototype: 
procedure RegisterServer(const Filename: String; const FailCriticalErrors: 
Boolean); 

Description: 
Registers the OLE server (a.k.a. ActiveX control) with the specified filename. If FailCriticalErrors is True, 
the system is allowed to display error messages. Throws an exception if not successful. 

Remarks: 
none 



Support function: UnregisterServer 
Prototype: 
function UnregisterServer(const Filename: String; const FailCriticalErrors: 
Boolean): Boolean; 

Description: 
Unregisters the OLE server (a.k.a. ActiveX control) with the specified filename. If FailCriticalErrors is True,
the system is allowed to display error messages. Returns True if successful, False otherwise. 

Remarks: 
none 



Support function: RegisterTypeLibrary 
Prototype: 
procedure RegisterTypeLibrary(const Filename: String); 

Description: 
Registers the type library with the specified filename. Throws an exception if not successful. 

Remarks: 
none 



Support function: UnregisterTypeLibrary 
Prototype: 
function UnregisterTypeLibrary(const Filename: String): Boolean 

Description: 
Unregisters the type library with the specified filename. Returns True if successful, False otherwise. 

Remarks: 
none 



Support function: IncrementSharedCount 
Prototype: 
procedure IncrementSharedCount(const Filename: String; const AlreadyExisted: 
Boolean); 

Description: 
Increments the shared count (a.k.a. the reference counter) of the specified file. 

Remarks: 
none 



Support function: DecrementSharedCount 
Prototype: 
function DecrementSharedCount(const Filename: String): Boolean; 

Description: 
Decrements the shared count (a.k.a. the reference counter) of the specified file. 

Remarks: 
none 



Support function: RestartReplace 
Prototype: 
procedure RestartReplace(const TempFile, DestFile: String); 

Description: 
Renames TempFile to DestFile the next time Windows is started. If DestFile already existed, it will be 
overwritten. If DestFile is '' then TempFile will be deleted. 

Remarks: 
none 



Support function: UnregisterFont 
Prototype: 
procedure UnregisterFont(const FontName, FontFilename: String); 

Description: 
Unregisters the font with the specified face and filename. 

Remarks: 
none 



Support function: ModifyPifFile 
Prototype: 
function ModifyPifFile(const Filename: String; const CloseOnExit: Boolean): 
Boolean; 

Description: 
Changes the "Close on exit" setting of a .pif file. Returns True if it was able to make the change. 

Remarks: 
none 



Support function: RegKeyExists 
Prototype: 
function RegKeyExists(const RootKey: Integer; const SubKeyName: String): 
Boolean; 

Description: 
Returns True if the specified key exists. 

Remarks: 
none 



Support function: RegValueExists 
Prototype: 
function RegValueExists(const RootKey: Integer; const SubKeyName, ValueName: 
String): Boolean; 

Description: 
Returns True if the specified key and value exists. 

Remarks: 
none 



Support function: RegGetSubkeyNames 
Prototype: 
function RegGetSubkeyNames(const RootKey: Integer; const SubKeyName: String; 
var Names: TArrayOfString): Boolean; 

Description: 
Opens the specified registry key and reads the names of its subkeys into the array Names (which is first 
cleared). Returns True if successful. 

Remarks: 
none 



Support function: RegQueryStringValue 
Prototype: 
function RegQueryStringValue(const RootKey: Integer; const SubKeyName, 
ValueName: String; var ResultStr: String): Boolean; 

Description: 
Queries the specified REG_SZ or REG_EXPAND_SZ registry key/value, and returns the value in 
ResultStr. Returns True if successful. When False is returned, ResultStr is unmodified. 

Remarks: 
none 



Support function: RegQueryMultiStringValue 
Prototype: 
function RegQueryMultiStringValue(const RootKey: Integer; const SubKeyName, 
ValueName: String; var ResultStr: String): Boolean; 

Description: 
Queries the specified REG_MULTISZ registry key/value, and returns the value in ResultStr. Returns True 
if successful. When False is returned, ResultStr is unmodified. 

Remarks: 
none 



Support function: RegQueryDWordValue 
Prototype: 
function RegQueryDWordValue(const RootKey: Integer; const SubKeyName, 
ValueName: String; var ResultDWord: Cardinal): Boolean; 

Description: 
Queries the specified REG_DWORD registry key/value, and returns the value in ResultDWord. Returns 
True if successful. When False is returned, ResultDWord is unmodified. 

Remarks: 
none 



Support function: RegQueryBinaryValue 
Prototype: 
function RegQueryBinaryValue(const RootKey: Integer; const SubKeyName, 
ValueName: String; var ResultStr: String): Boolean; 

Description: 
Queries the specified REG_BINARY registry key/value, and returns the value in ResultStr. Returns True if
successful. When False is returned, ResultStr is unmodified. 

Remarks: 
none 



Support function: RegWriteStringValue 
Prototype: 
function RegWriteStringValue (const RootKey: Integer; const SubKeyName, 
ValueName, Value: String): Boolean; 

Description: 
Writes the specified REG_SZ registry key/value. Returns True if successful, False otherwise. 

Remarks: 
none 



Support function: RegWriteMultiStringValue 
Prototype: 
function RegWriteMultiStringValue (const RootKey: Integer; const SubKeyName, 
ValueName, Value: String): Boolean; 

Description: 
Writes the specified REG_MULTISZ registry key/value. Returns True if successful, False otherwise. 

Remarks: 
none 



Support function: RegWriteDWordValue 
Prototype: 
function RegWriteDWordValue (const RootKey: Integer; const SubKeyName, 
ValueName: String; const Value: Cardinal): Boolean; 

Description: 
Writes the specified REG_DWORD registry key/value. Returns True if successful, False otherwise. 

Remarks: 
none 



Support function: RegWriteBinaryValue 
Prototype: 
function RegWriteBinaryValue (const RootKey: Integer; const SubKeyName, 
ValueName, Value: String): Boolean; 

Description: 
Writes the specified REG_BINARY registry key/value. Returns True if successful, False otherwise. 

Remarks: 
none 



Support function: IniKeyExists 
Prototype: 
function IniKeyExists(const Section, Key, Filename: String): Boolean; 

Description: 
Returns True if the specified INI key exists. 

Remarks: 
none 



Support function: IsIniSectionEmpty 
Prototype: 
function IsIniSectionEmpty(const Section, Filename: String): Boolean; 

Description: 
Returns True if the specified INI section is empty. 

Remarks: 
none 



Support function: GetIniBool 
Prototype: 
function GetIniBool(const Section, Key: String; const Default: Boolean; const 
Filename: String): Boolean 

Description: 
Reads a Boolean from an INI file. 

Remarks: 
none 



Support function: GetIniInt 
Prototype: 
function GetIniInt(const Section, Key: String; const Default, Min, Max: 
Longint; const Filename: String): Longint; 

Description: 
Reads a Longint from an INI file. If the Longint read is not between Min/Max then it returns Default. If 
Min=Max then Min/Max are ignored. 

Remarks: 
none 



Support function: GetIniString 
Prototype: 
function GetIniString(const Section, Key, Default, Filename: String): String; 

Description: 
Reads a String from an INI file. 

Remarks: 
none 



Support function: SetIniBool 
Prototype: 
function SetIniBool(const Section, Key: String; const Value: Boolean; const 
Filename: String): Boolean; 

Description: 
Writes a Boolean to an INI file. 

Remarks: 
none 



Support function: SetIniInt 
Prototype: 
function SetIniInt(const Section, Key: String; const Value: Longint; const 
Filename: String): Boolean; 

Description: 
Writes a Longint to an INI file. 

Remarks: 
none 



Support function: SetIniString 
Prototype: 
function SetIniString(const Section, Key, Value, Filename: String): Boolean; 

Description: 
Writes a string to an INI file. 

Remarks: 
none 



Support function: DeleteIniSection 
Prototype: 
procedure DeleteIniSection(const Section, Filename: String); 

Description: 
Deletes the specified section from an INI file. 

Remarks: 
none 



Support function: DeleteIniEntry 
Prototype: 
procedure DeleteIniEntry(const Section, Key, Filename: String); 

Description: 
Deletes the specified key from an INI file. 

Remarks: 
none 



Support function: ScriptDlgPageSetCaption 
Prototype: 
procedure ScriptDlgPageSetCaption(const Caption: String); 

Description: 
Sets the caption of the custom wizard page. 

Remarks: 
none 



Support function: ScriptDlgPageSetSubCaption1 
Prototype: 
procedure ScriptDlgPageSetSubCaption1(const SubCaption1: String); 

Description: 
Sets the first subcaption of the custom wizard page. Ignored by the classic style wizard. 

Remarks: 
none 



Support function: ScriptDlgPageSetSubCaption2 
Prototype: 
procedure ScriptDlgPageSetSubCaption2(const SubCaption2: String); 

Description: 
Sets the seconds subcaption of the custom wizard page. 

Remarks: 
none 



Support function: ScriptDlgPageShowBackButton 
Prototype: 
procedure ScriptDlgPageShowBackButton(const Show: Boolean); 

Description: 
Hides or shows the Back button on the custom wizard page. 

Remarks: 
none 



Support function: ScriptDlgPageOpen 
Prototype: 
procedure ScriptDlgPageOpen; 

Description: 
Opens the custom wizard page. 

Remarks: 
none 



Support function: InputDir 
Prototype: 
function InputDir(const AppendDir: String; var Value: String): Boolean; 

Description: 
Displays a custom wizard page to select a directory. 
When the AppendDir string is not empty, Setup will automatically append it to directories the user double-
clicks on. 

Remarks: 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: InputFile 
Prototype: 
function InputFile(const Prompt, Filter, DefaultExtension: string; var Value: 
string): Boolean; 

Description: 
Displays a custom wizard page to select a file. 

Remarks: 
An example Filter: 'Text files (*.txt)|*.txt|All files (*.*)|*.*' 
 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: InputFileArray 
Prototype: 
function InputFileArray(const Prompts, Filters, DefaultExtensions: 
TArrayOfString; var Values: TArrayOfString): Boolean; 

Description: 
Displays a custom wizard page to select multiple files. 

Remarks: 
An example Filter: 'Text files (*.txt)|*.txt|All files (*.*)|*.*' 
 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: InputOptionArray 
Prototype: 
function InputOptionArray(const Prompts: TArrayOfString; var Values: 
TArrayOfString; const Exclusive, ListBox: Boolean): Boolean; 

Description: 
Displays multiple checkboxes on a custom wizard page. If Exclusive is True, radiobuttons are displayed. If
ListBox is True, the checkboxes or radiobuttons are placed inside a scrollable listbox. Returns True if the 
user clicked Next, False otherwise. 

Remarks: 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: InputOption 
Prototype: 
function InputOption(const Prompt: String; var Value: String): Boolean; 

Description: 
Displays a checkbox on a custom wizard page. Returns True if the user clicked Next, False otherwise. 

Remarks: 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: InputQuery 
Prototype: 
function InputQuery(const Prompt: String; var Value: String): Boolean; 

Description: 
Displays an input box on a custom wizard page. Returns True if the user clicked Next, False otherwise. 

Remarks: 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: InputQueryArray 
Prototype: 
function InputQueryArray(const Prompts: TArrayOfString; var Values: 
TArrayOfString): Boolean; 

Description: 
Displays multiple input boxes on a custom wizard page. Returns True if the user clicked Next, False 
otherwise. 

Remarks: 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: InputQueryArrayEx 
Prototype: 
function InputQueryArrayEx(const Prompts: TArrayOfString; const PasswordChars:
TArrayOfChar; var Values: TArrayOfString): Boolean; 

Description: 
Displays multiple input boxes on a custom wizard page. Returns True if the user clicked Next, False 
otherwise. 
 
Use PasswordChars to Indicate the character, if any, to display in place of the actual characters typed in 
the control. 

Remarks: 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: OutputMsg 
Prototype: 
function OutputMsg(const Msg: String; const WaitUntilClick: Boolean): Boolean;
Description: 
Displays a message on a custom wizard page. If WaitUntilClick is True: waits until the user clicks a button
and returns True if the user clicked Next, False otherwise. If WaitUntilClick is False: hides the Next and 
Back buttons and returns immediately. 

Remarks: 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: OutputMsgMemo 
Prototype: 
function OutputMsgMemo(const Prompt, Msg: String): Boolean; 

Description: 
Displays a message in a memo on a custom wizard page. Supports Rich Text (RTF). 

Remarks: 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: OutputProgress 
Prototype: 
procedure OutputProgress(const Msg1, Msg2: String; const Progress, 
MaxProgress: Longint); 

Description: 
Displays a progress bar on a custom wizard page, hides the Next and Back buttons and returns 
immediately. 

Remarks: 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: ScriptDlgPageProcessCustom 
Prototype: 
function ScriptDlgPageProcessCustom(): Boolean; 

Description: 
Displays a custom wizard page with custom VCL controls on it. Returns True if the user clicked Next, 
False otherwise. 

Remarks: 
Use Terminated() to check whether to user canceled Setup instead of clicking the Next or Back button. 



Support function: ScriptDlgPageClearCustom 
Prototype: 
procedure ScriptDlgPageClearCustom(); 

Description: 
not yet available 

Remarks: 
none 



Support function: ScriptDlgPageClose 
Prototype: 
procedure ScriptDlgPageClose(const FullRestore: Boolean); 

Description: 
Closes the custom wizard page. Set FullRestore to True if the user selected to go back to the non custom 
wizard page that was displayed before the custom wizard page was openend. Set FullRestore to False 
otherwise. 
 
If you're not sure what to set FullRestore to, set it to True. 

Remarks: 
none 



Support function: MsgBox 
Prototype: 
function MsgBox(const Text: String; const Typ: TMsgBoxType; const Buttons: 
Integer): Integer; 

Description: 
Displays a message box. 

Remarks: 
none 



Support function: GetOpenFileName 
Prototype: 
function GetOpenFileName(const Prompt: String; var FileName: String; const 
InitialDirectory, Filter, DefaultExtension: String): Boolean; 

Description: 
Displays a dialog box that enables the user to select a file. Returns True if the user selected a file, False 
otherwise. The name of the selected file is returned in the FileName string. 

Remarks: 
An example Filter: 'Text files (*.txt)|*.txt|All files (*.*)|*.*' 



Support function: BrowseForFolder 
Prototype: 
function BrowseForFolder(const Prompt: String; var Directory: String): 
Boolean; 

Description: 
Displays a dialog box that enables the user to select a directory using the current value of Directory as the
initially selected directory. Returns True if the user selected a directory, False otherwise. The selected 
directory is returned in the Directory string. 

Remarks: 
none 



Support function: ExitSetupMsgBox 
Prototype: 
function ExitSetupMsgBox: Boolean; 

Description: 
Displays the 'Exit Setup?' message box. Does not terminate Setup. 

Remarks: 
none 



Support function: LoadDLL 
Prototype: 
function LoadDLL(const DLLName: String; var ErrorCode: Integer): Longint; 

Description: 
Loads the specified DLL. Returns the DLL handle if the DLL was loaded successfully, zero otherwise. If 
zero is returned then ErrorCode specifies the error that occurred. Use SysErrorMessage(ErrorCode) to 
get a description of the error. 

Remarks: 
none 



Support function: CallDLLProc 
Prototype: 
function CallDLLProc(const DLLHandle: Longint; const ProcName: String; const 
Param1, Param2: Longint; var Result: Longint): Boolean; 

Description: 
Calls the specified function in a DLL specified using the DLL handle returned by LoadDLL. Returns True is
the procedure was called successfully, False otherwise. 
The function must use the standard calling convention, accept two 4 byte integer parameters and return a
4 byte integer result. 

Remarks: 
none 



Support function: FreeDLL 
Prototype: 
function FreeDLL(const DLLHandle: Longint): Boolean; 

Description: 
Unloads a DLL specified using the DLL handle returned by LoadDLL. 

Remarks: 
none 



Support function: CastStringToInteger 
Prototype: 
function CastStringToInteger(var S: String): Longint; 

Description: 
Casts a string to an integer so that a string can be passed to a DLL using CallDllProc. 

Remarks: 
none 



Support function: CastIntegerToString 
Prototype: 
function CastIntegerToString(const L: Longint): String; 

Description: 
Casts an integer to a string so that a string can be received from a DLL using CallDllProc. 

Remarks: 
none 



Support function: Sleep 
Prototype: 
procedure Sleep(const Milliseconds: LongInt); 

Description: 
Suspends the execution of Setup for a specified interval. 

Remarks: 
none 



Support function: Random 
Prototype: 
function Random(const Range: Integer): Integer; 

Description: 
Returns a random number within the range 0 <= X < Range. 

Remarks: 
none 



Support function: Beep 
Prototype: 
procedure Beep; 

Description: 
Beeps. 

Remarks: 
none 



Support function: BringToFrontAndRestore 
Prototype: 
procedure BringToFrontAndRestore; 

Description: 
Makes sure that Setup is visible and the foreground window. 

Remarks: 
none 





Pascal Scripting: Support Classes Reference
Below is the list of support classes that can be used from within the Pascal script. There's also one 
support object available: WizardForm of type TWizardForm. 



TObject = class 
  constructor Create; 
  procedure Free; 
end; 

TPersistent = class(TObject) 
  procedure Assign(Source: TPersistent); 
end; 

TComponent = class(TPersistent) 
  function FindComponent(AName: string): TComponent; 
  constructor Create(AOwner: TComponent); 

  property Owner: TComponent; read write; 
  procedure DESTROYCOMPONENTS; 
  procedure DESTROYING; 
  procedure FREENOTIFICATION(ACOMPONENT:TCOMPONENT); 
  procedure INSERTCOMPONENT(ACOMPONENT:TCOMPONENT); 
  procedure REMOVECOMPONENT(ACOMPONENT:TCOMPONENT); 
  property COMPONENTS: TCOMPONENT INTEGER; read; 
  property COMPONENTCOUNT: INTEGER; read; 
  property COMPONENTINDEX: INTEGER; read write; 
  property COMPONENTSTATE: Byte; read; 
  property DESIGNINFO: LONGINT; read write; 
  property NAME: STRING; read write; 
  property TAG: LONGINT; read write; 
end; 

TStrings = class(TPersistent) 
  function Add(S: string): Integer; 
  procedure Append(S: string); 
  procedure AddStrings(Strings: TStrings); 
  procedure Clear; 
  procedure Delete(Index: Integer); 
  function IndexOf(const S: string): Integer; 
  procedure Insert(Index: Integer; S: string); 
  property Count: Integer; read; 
  property Text: String; read write; 
  property CommaText: String; read write; 
  procedure LoadFromFile(FileName: string); 
  procedure SaveToFile(FileName: string); 
  property Strings: String Integer; read write; 
  property Objects: TObject Integer; read write; 
end; 

TStringList = class(TStrings) 
  function FIND(S:STRING;var INDEX:INTEGER):BOOLEAN; 
  procedure SORT; 
  property DUPLICATES: TDUPLICATES; read write; 
  property SORTED: BOOLEAN; read write; 
  property ONCHANGE: TNOTIFYEVENT; read write; 
  property ONCHANGING: TNOTIFYEVENT; read write; 
end; 

TGraphicsObject = class(TPersistent) 



  property ONCHANGE: TNOTIFYEVENT; read write; 
end; 

TFont = class(TGraphicsObject) 
  constructor Create; 
  property Handle: Integer; read; 
  property Color: Integer; read write; 
  property Height: Integer; read write; 
  property Name: string; read write; 
  property Pitch: Byte; read write; 
  property Size: Integer; read write; 
  property PixelsPerInch: Integer; read write; 
  property Style: TFontStyles; read write; 
end; 

TCanvas = class(TPersistent) 
  procedure Arc(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer); 
  procedure Chord(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer); 
  procedure Draw(X, Y: Integer; Graphic: TGraphic); 
  procedure Ellipse(X1, Y1, X2, Y2: Integer); 
  procedure FloodFill(X, Y: Integer; Color: TColor; FillStyle: Byte); 
  procedure LineTo(X, Y: Integer); 
  procedure MoveTo(X, Y: Integer); 
  procedure Pie(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer); 
  procedure Rectangle(X1, Y1, X2, Y2: Integer); 
  procedure Refresh; 
  procedure RoundRect(X1, Y1, X2, Y2, X3, Y3: Integer); 
  function TextHeight(Text: string): Integer; 
  procedure TextOut(X, Y: Integer; Text: string); 
  function TextWidth(Text: string): Integer; 
  property Handle: Integer; read write; 
  property Pixels: Integer Integer Integer; read write; 
  property Brush: TBrush; read; 
  property CopyMode: Byte; read write; 
  property Font: TFont; read; 
  property Pen: TPen; read; 
end; 

TPen = class(TGraphicsObject) 
  constructor CREATE; 
  property COLOR: TCOLOR; read write; 
  property MODE: TPENMODE; read write; 
  property STYLE: TPENSTYLE; read write; 
  property WIDTH: INTEGER; read write; 
end; 

TBrush = class(TGraphicsObject) 
  constructor CREATE; 
  property COLOR: TCOLOR; read write; 
  property STYLE: TBRUSHSTYLE; read write; 
end; 

TComponent = class(TControl) 
  constructor Create(AOwner: TComponent); 
  procedure BringToFront; 
  procedure Hide; 



  procedure Invalidate; 
  procedure refresh; 
  procedure Repaint; 
  procedure SendToBack; 
  procedure Show; 
  procedure Update; 
  procedure SetBounds(x,y,w,h: Integer); 
  property Left: Integer; read write; 
  property Top: Integer; read write; 
  property Width: Integer; read write; 
  property Height: Integer; read write; 
  property Hint: String; read write; 
  property Align: TAlign; read write; 
  property ClientHeight: Longint; read write; 
  property ClientWidth: Longint; read write; 
  property ShowHint: Boolean; read write; 
  property Visible: Boolean; read write; 
  property ENABLED: BOOLEAN; read write; 
  property HINT: STRING; read write; 
end; 

TWinControl = class(TControl) 
  property Parent: TWinControl; read write; 
  property Handle: Longint; read write; 
  property Showing: Boolean; read; 
  property TabOrder: Integer; read write; 
  property TabStop: Boolean; read write; 
  function CANFOCUS:BOOLEAN; 
  function FOCUSED:BOOLEAN; 
  property CONTROLS: TCONTROL INTEGER; read; 
  property CONTROLCOUNT: INTEGER; read; 
end; 

TGraphicControl = class(TControl) 
end; 

TCustomControl = class(TWinControl) 
end; 

TScrollingWinControl = class(TWinControl) 
  procedure SCROLLINVIEW(ACONTROL:TCONTROL); 
  property HORZSCROLLBAR: TCONTROLSCROLLBAR; read write; 
  property VERTSCROLLBAR: TCONTROLSCROLLBAR; read write; 
end; 

TForm = class(TScrollingWinControl) 
  constructor CREATENEW(AOWNER:TCOMPONENT; Dummy: Longint); 
  procedure CLOSE; 
  procedure HIDE; 
  procedure SHOW; 
  function SHOWMODAL:INTEGER; 
  procedure RELEASE; 
  property ACTIVE: BOOLEAN; read; 
  property ACTIVECONTROL: TWINCONTROL; read write; 
  property BORDERICONS: Longint; read write; 
  property BORDERSTYLE: TFORMBORDERSTYLE; read write; 



  property CAPTION: STRING; read write; 
  property AUTOSCROLL: BOOLEAN; read write; 
  property COLOR: TCOLOR; read write; 
  property FONT: TFONT; read write; 
  property FORMSTYLE: TFORMSTYLE; read write; 
  property KEYPREVIEW: BOOLEAN; read write; 
  property POSITION: TPOSITION; read write; 
  property ONACTIVATE: TNOTIFYEVENT; read write; 
  property ONCLICK: TNOTIFYEVENT; read write; 
  property ONDBLCLICK: TNOTIFYEVENT; read write; 
  property ONCLOSE: TCLOSEEVENT; read write; 
  property ONCLOSEQUERY: TCLOSEQUERYEVENT; read write; 
  property ONCREATE: TNOTIFYEVENT; read write; 
  property ONDESTROY: TNOTIFYEVENT; read write; 
  property ONDEACTIVATE: TNOTIFYEVENT; read write; 
  property ONHIDE: TNOTIFYEVENT; read write; 
  property ONKEYDOWN: TKEYEVENT; read write; 
  property ONKEYPRESS: TKEYPRESSEVENT; read write; 
  property ONKEYUP: TKEYEVENT; read write; 
  property ONRESIZE: TNOTIFYEVENT; read write; 
  property ONSHOW: TNOTIFYEVENT; read write; 
end; 

TCustomLabel = class(TGraphicControl) 
end; 

TLabel = class(TCustomLabel) 
  property ALIGNMENT: TAlignment; read write; 
  property AUTOSIZE: Boolean; read write; 
  property CAPTION: String; read write; 
  property COLOR: Longint; read write; 
  property FOCUSCONTROL: TWinControl; read write; 
  property FONT: TFont; read write; 
  property WORDWRAP: Boolean; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
end; 

TCustomEdit = class(TWinControl) 
  procedure CLEAR; 
  procedure CLEARSELECTION; 
  procedure SELECTALL; 
  property MODIFIED: BOOLEAN; read write; 
  property SELLENGTH: INTEGER; read write; 
  property SELSTART: INTEGER; read write; 
  property SELTEXT: STRING; read write; 
  property TEXT: string; read write; 
end; 

TEdit = class(TCustomEdit) 
  property AUTOSELECT: Boolean; read write; 
  property AUTOSIZE: Boolean; read write; 
  property BORDERSTYLE: BorderStyle; read write; 
  property COLOR: Longint; read write; 
  property FONT: TFont; read write; 
  property HIDESELECTION: Boolean; read write; 



  property MAXLENGTH: Integer; read write; 
  property PASSWORDCHAR: Char; read write; 
  property READONLY: Boolean; read write; 
  property TEXT: string; read write; 
  property ONCHANGE: TNotifyEvent; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
  property ONKEYDOWN: TKeyEvent; read write; 
  property ONKEYPRESS: TKeyPressEvent; read write; 
  property ONKEYUP: TKeyEvent; read write; 
end; 

TCustomMemo = class(TCustomEdit) 
  property LINES: TSTRINGS; read write; 
end; 

TMemo = class(TMemo) 
  property LINES: TSTRINGS; read write; 
  property ALIGNMENT: TAlignment; read write; 
  property BORDERSTYLE: BorderStyle; read write; 
  property COLOR: Longint; read write; 
  property FONT: TFont; read write; 
  property HIDESELECTION: Boolean; read write; 
  property MAXLENGTH: Integer; read write; 
  property READONLY: Boolean; read write; 
  property SCROLLBARS: TScrollStyle; read write; 
  property WANTRETURNS: Boolean; read write; 
  property WANTTABS: Boolean; read write; 
  property WORDWRAP: Boolean; read write; 
  property ONCHANGE: TNotifyEvent; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
  property ONKEYDOWN: TKeyEvent; read write; 
  property ONKEYPRESS: TKeyPressEvent; read write; 
  property ONKEYUP: TKeyEvent; read write; 
end; 

TCustomComboBox = class(TWinControl) 
  property DROPPEDDOWN: BOOLEAN; read write; 
  property ITEMS: TSTRINGS; read write; 
  property ITEMINDEX: INTEGER; read write; 
end; 

TComboBox = class(TCustomComboBox) 
  property STYLE: TComboBoxStyle; read write; 
  property COLOR: Longint; read write; 
  property DROPDOWNCOUNT: Integer; read write; 
  property FONT: TFont; read write; 
  property MAXLENGTH: Integer; read write; 
  property SORTED: Boolean; read write; 
  property TEXT: string; read write; 
  property ONCHANGE: TNotifyEvent; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
  property ONKEYDOWN: TKeyEvent; read write; 
  property ONKEYPRESS: TKeyPressEvent; read write; 



  property ONKEYUP: TKeyEvent; read write; 
end; 

TButtonControl = class(TWinControl) 
end; 

TButton = class(TButtonControl) 
  property CANCEL: BOOLEAN; read write; 
  property CAPTION: String; read write; 
  property DEFAULT: BOOLEAN; read write; 
  property FONT: TFont; read write; 
  property MODALRESULT: LONGINT; read write; 
  property ONCLICK: TNotifyEvent; read write; 
end; 

TCustomCheckBox = class(TButtonControl) 
end; 

TCheckBox = class(TCustomCheckBox) 
  property ALIGNMENT: TAlignment; read write; 
  property ALLOWGRAYED: Boolean; read write; 
  property CAPTION: String; read write; 
  property CHECKED: Boolean; read write; 
  property COLOR: Longint; read write; 
  property FONT: TFont; read write; 
  property STATE: TCheckBoxState; read write; 
  property ONCLICK: TNotifyEvent; read write; 
end; 

TRadioButton = class(TButtonControl) 
  property ALIGNMENT: TALIGNMENT; read write; 
  property CAPTION: String; read write; 
  property CHECKED: BOOLEAN; read write; 
  property COLOR: Longint; read write; 
  property FONT: TFont; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
end; 

TCustomListBox = class(TWinControl) 
  property ITEMS: TSTRINGS; read write; 
  property ITEMINDEX: INTEGER; read write; 
  property SELCOUNT: INTEGER; read; 
  property SELECTED: BOOLEAN INTEGER; read write; 
end; 

TListBox = class(TCustomListBox) 
  property BORDERSTYLE: TBorderStyle; read write; 
  property COLOR: Longint; read write; 
  property FONT: TFont; read write; 
  property MULTISELECT: Boolean; read write; 
  property SORTED: Boolean; read write; 
  property STYLE: TListBoxStyle; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 



  property ONKEYDOWN: TKeyEvent; read write; 
  property ONKEYPRESS: TKeyPressEvent; read write; 
  property ONKEYUP: TKeyEvent; read write; 
end; 

TPaintBox = class(TPaintBox) 
  property CANVAS: TCANVAS; read; 
  property COLOR: Longint; read write; 
  property FONT: TFont; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
  property ONPAINT: TNotifyEvent; read write; 
end; 

TBevel = class(TGraphicControl) 
  property SHAPE: TBEVELSHAPE; read write; 
  property STYLE: TBEVELSTYLE; read write; 
end; 

TCustomPanel = class(TCustomControl) 
end; 

TPanel = class(TCustomPanel) 
  property ALIGNMENT: TAlignment; read write; 
  property BEVELINNER: TPanelBevel; read write; 
  property BEVELOUTER: TPanelBevel; read write; 
  property BEVELWIDTH: TBevelWidth; read write; 
  property BORDERWIDTH: TBorderWidth; read write; 
  property BORDERSTYLE: TBorderStyle; read write; 
  property CAPTION: String; read write; 
  property COLOR: Longint; read write; 
  property FONT: TFont; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
end; 

TPage = class(TCustomControl) 
  property CAPTION: String; read write; 
end; 

TNotebook = class(TCustomControl) 
  property ACTIVEPAGE: STRING; read write; 
  property COLOR: Longint; read write; 
  property FONT: TFont; read write; 
  property PAGEINDEX: INTEGER; read write; 
  property PAGES: TSTRINGS; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
  property ONPAGECHANGED: TNOTIFYEVENT; read write; 
end; 

TNewStaticText = class(TWinControl) 
  property AUTOSIZE: BOOLEAN; read write; 
  property CAPTION: String; read write; 
  property COLOR: Longint; read write; 



  property FOCUSCONTROL: TWinControl; read write; 
  property FONT: TFont; read write; 
  property SHOWACCELCHAR: Boolean; read write; 
  property WORDWRAP: Boolean; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 

  property DRAGCURSOR: Longint; read write; 
  property DRAGMODE: TDragMode; read write; 
  property PARENTCOLOR: Boolean; read write; 
  property PARENTFONT: Boolean; read write; 
  property PARENTSHOWHINT: Boolean; read write; 
  property POPUPMENU: TPopupMenu; read write; 
  property ONDRAGDROP: TDragDropEvent; read write; 
  property ONDRAGOVER: TDragOverEvent; read write; 
  property ONENDDRAG: TEndDragEvent; read write; 
  property ONMOUSEDOWN: TMouseEvent; read write; 
  property ONMOUSEMOVE: TMouseMoveEvent; read write; 
  property ONMOUSEUP: TMouseEvent; read write; 
  property ONSTARTDRAG: TStartDragEvent; read write; 
end; 

TNewCheckListBox = class(TCustomListBox) 
  function 
ADDCHECKBOX(ACAPTION,ASUBITEM:STRING;ALEVEL:BYTE;ACHECKED,AENABLED,AHASINTE
RNALCHILDREN:BOOLEAN;AOBJECT:TOBJECT):INTEGER; 
  function 
ADDGROUP(ACAPTION,ASUBITEM:STRING;ALEVEL:BYTE;AOBJECT:TOBJECT):INTEGER; 
  function 
ADDRADIOBUTTON(ACAPTION,ASUBITEM:STRING;ALEVEL,AGROUP:BYTE;ACHECKED,AENABLE
D:BOOLEAN;AOBJECT:TOBJECT):INTEGER; 
  property CHECKED: BOOLEAN INTEGER; read write; 
  property STATE: TCHECKBOXSTATE INTEGER; read write; 
  property ITEMENABLED: BOOLEAN INTEGER; read write; 
  property ITEMOBJECT: TOBJECT INTEGER; read write; 
  property ITEMSUBITEM: STRING INTEGER; read write; 
  property ALLOWGRAYED: BOOLEAN; read write; 
  property FLAT: BOOLEAN; read write; 
  property MINITEMHEIGHT: INTEGER; read write; 
  property OFFSET: INTEGER; read write; 
  property MULTISELECT: BOOLEAN; read write; 
  property ONCLICKCHECK: TNOTIFYEVENT; read write; 
  property BORDERSTYLE: TBORDERSTYLE; read write; 
  property COLOR: Longint; read write; 
  property FONT: TFont; read write; 
  property SORTED: Boolean; read write; 
  property STYLE: TListBoxStyle; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
  property ONKEYDOWN: TKeyEvent; read write; 
  property ONKEYPRESS: TKeyPressEvent; read write; 
  property ONKEYUP: TKeyEvent; read write; 
  property SHOWLINES: BOOLEAN; read write; 
  property WANTTABS: BOOLEAN; read write; 

  property COLUMNS: Integer; read; 



  property CTL3D: Boolean; read write; 
  property DRAGCURSOR: Longint; read write; 
  property DRAGMODE: TDragMode; read write; 
  property EXTENDEDSELECT: Boolean; read write; 
  property INTEGRALHEIGHT: Boolean; read write; 
  property PARENTCOLOR: Boolean; read write; 
  property PARENTCTL3D: Boolean; read write; 
  property PARENTFONT: Boolean; read write; 
  property PARENTSHOWHINT: Boolean; read write; 
  property POPUPMENU: TPopupMenu; read write; 
  property TABWIDTH: Integer; read write; 
  property ONDRAGDROP: TDragDropEvent; read write; 
  property ONDRAGOVER: TDragOverEvent; read write; 
  property ONDRAWITEM: TDrawItemEvent; read write; 
  property ONENDDRAG: TEndDragEvent; read write; 
  property ONENTER: TNotifyEvent; read write; 
  property ONEXIT: TNotifyEvent; read write; 
  property ONMEASUREITEM: TMeasureItemEvent; read write; 
  property ONMOUSEDOWN: TMouseEvent; read write; 
  property ONMOUSEMOVE: TMouseMoveEvent; read write; 
  property ONMOUSEUP: TMouseEvent; read write; 
  property ONSTARTDRAG: TStartDragEvent; read write; 
end; 

TNewDirectoryListBox = class(TCustomListBox) 
  property DRIVE: CHAR; read write; 
  property DIRECTORY: STRING; read write; 
  property COLOR: Longint; read write; 
  property DIRLABEL: TLABEL; read write; 
  property FONT: TFont; read write; 
  property ONCHANGE: TNOTIFYEVENT; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
  property ONKEYDOWN: TKeyEvent; read write; 
  property ONKEYPRESS: TKeyPressEvent; read write; 
  property ONKEYUP: TKeyEvent; read write; 

  property COLUMNS: Integer; read write; 
  property CTL3D: Boolean; read write; 
  property DRAGCURSOR: Longint; read write; 
  property DRAGMODE: TDragMode; read write; 
  property INTEGRALHEIGHT: Boolean; read write; 
  property PARENTCOLOR: Boolean; read write; 
  property PARENTCTL3D: Boolean; read write; 
  property PARENTFONT: Boolean; read write; 
  property PARENTSHOWHINT: Boolean; read write; 
  property POPUPMENU: TPopupMenu; read write; 
  property ONDRAGDROP: TDragDropEvent; read write; 
  property ONDRAGOVER: TDragOverEvent; read write; 
  property ONENDDRAG: TEndDragEvent; read write; 
  property ONENTER: TNotifyEvent; read write; 
  property ONEXIT: TNotifyEvent; read write; 
  property ONMOUSEDOWN: TMouseEvent; read write; 
  property ONMOUSEMOVE: TMouseMoveEvent; read write; 
  property ONMOUSEUP: TMouseEvent; read write; 
  property ONSTARTDRAG: TStartDragEvent; read write; 



end; 

TNewDriveComboBox = class(TCustomComboBox); 
  property DRIVE: CHAR; read write; 
  property AUTOREFRESH: BOOLEAN; read write; 
  property COLOR: Longint; read write; 
  property DIRLIST: TNEWDIRECTORYLISTBOX; read write; 
  property FONT: TFont; read write; 
  property ONCHANGE: TNotifyEvent; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 
  property ONKEYDOWN: TKeyEvent; read write; 
  property ONKEYPRESS: TKeyPressEvent; read write; 
  property ONKEYUP: TKeyEvent; read write; 

  property CTL3D: Boolean; read write; 
  property DRAGMODE: TDragMode; read write; 
  property DRAGCURSOR: Longint; read write; 
  property PARENTCOLOR: Boolean; read write; 
  property PARENTCTL3D: Boolean; read write; 
  property PARENTFONT: Boolean; read write; 
  property PARENTSHOWHINT: Boolean; read write; 
  property POPUPMENU: TPopupMenu; read write; 
  property TEXTCASE: TNEWTEXTCASE; read write; 
  property ONDRAGDROP: TDragDropEvent; read write; 
  property ONDRAGOVER: TDragOverEvent; read write; 
  property ONDROPDOWN: TNotifyEvent; read write; 
  property ONENDDRAG: TEndDragEvent; read write; 
  property ONENTER: TNotifyEvent; read write; 
  property ONEXIT: TNotifyEvent; read write; 
  property ONSTARTDRAG: TStartDragEvent; read write; 
end; 

TNewPathLabel = class(TCustomLabel) 
  property ALIGNMENT: TAlignment; read write; 
  property CAPTION: String; read write; 
  property COLOR: Longint; read write; 
  property FONT: TFont; read write; 
  property ONCLICK: TNotifyEvent; read write; 
  property ONDBLCLICK: TNotifyEvent; read write; 

  property DRAGCURSOR: Longint; read write; 
  property DRAGMODE: TDragMode; read write; 
  property FOCUSCONTROL: TWinControl; read write; 
  property PARENTCOLOR: Boolean; read write; 
  property PARENTFONT: Boolean; read write; 
  property PARENTSHOWHINT: Boolean; read write; 
  property POPUPMENU: TPopupMenu; read write; 
  property TRANSPARENT: Boolean; read write; 
  property ONDRAGDROP: TDragDropEvent; read write; 
  property ONDRAGOVER: TDragOverEvent; read write; 
  property ONENDDRAG: TEndDragEvent; read write; 
  property ONMOUSEDOWN: TMouseEvent; read write; 
  property ONMOUSEMOVE: TMouseMoveEvent; read write; 
  property ONMOUSEUP: TMouseEvent; read write; 
  property ONSTARTDRAG: TStartDragEvent; read write; 



end; 

TNewProgressBar = class(TWinControl) 
  property MIN: LONGINT; read write; 
  property MAX: LONGINT; read write; 
  property POSITION: LONGINT; read write; 
end; 

TRichEditViewer = class(TMemo) 
  property RTFTEXT: STRING'; write; 
  property USERICHEDIT: BOOLEAN; read write; 
end; 

TSetupChildForm = class(TForm) 
end; 

TWizardForm = class(TSetupChildForm) 
  property CANCELBUTTON: TBUTTON; read; 
  property NEXTBUTTON: TBUTTON; read; 
  property BACKBUTTON: TBUTTON; read; 
  property NOTEBOOK1: TNOTEBOOK; read; 
  property NOTEBOOK2: TNOTEBOOK; read; 
  property DISKSPACELABEL: TNewStaticText; read; 
  property DIREDIT: TEDIT; read; 
  property DIRLIST: TNEWDIRECTORYLISTBOX; read; 
  property DRIVELIST: TNEWDRIVECOMBOBOX; read; 
  property GROUPEDIT: TEDIT; read; 
  property NOICONSCHECK: TCHECKBOX; read; 
  property GROUPLIST: TLISTBOX; read; 
  property PASSWORDLABEL: TNewStaticText; read; 
  property PASSWORDEDIT: TEDIT; read; 
  property PASSWORDEDITLABEL: TNewStaticText; read; 
  property READYMEMO: TMEMO; read; 
  property TYPESCOMBO: TCOMBOBOX; read; 
  property BEVEL: TBEVEL; read; 
  property PICTUREPAINTBOX: TPAINTBOX; read; 
  property WELCOMELABEL1: TNewStaticText; read; 
  property INFOBEFOREMEMO: TRICHEDITVIEWER; read; 
  property INFOBEFORECLICKLABEL: TNewStaticText; read; 
  property MAINPANEL: TPANEL; read; 
  property BEVEL1: TBEVEL; read; 
  property PAGENAMELABEL: TNewStaticText; read; 
  property PAGEDESCRIPTIONLABEL: TNewStaticText; read; 
  property SMALLPICTUREPAINTBOX: TPAINTBOX; read; 
  property READYLABEL: TNewStaticText; read; 
  property FINISHEDLABEL: TNewStaticText; read; 
  property YESRADIO: TRADIOBUTTON; read; 
  property NORADIO: TRADIOBUTTON; read; 
  property PICTUREPAINTBOX2: TPAINTBOX; read; 
  property WELCOMELABEL2: TNewStaticText; read; 
  property LICENSELABEL1: TNewStaticText; read; 
  property LICENSEMEMO: TRICHEDITVIEWER; read; 
  property INFOAFTERMEMO: TRICHEDITVIEWER; read; 
  property INFOAFTERCLICKLABEL: TNewStaticText; read; 
  property COMPONENTSLIST: TNEWCHECKLISTBOX; read; 
  property COMPONENTSDISKSPACELABEL: TNewStaticText; read; 



  property BEVELEDLABEL: TNewStaticText; read; 
  property STATUSLABEL: TNewStaticText; read; 
  property FILENAMELABEL: TNEWPATHLABEL; read; 
  property PROGRESSGAUGE: TNEWPROGRESSBAR; read; 
  property SELECTDIRLABEL: TNewStaticText; read; 
  property SELECTSTARTMENUFOLDERLABEL: TNewStaticText; read; 
  property SELECTCOMPONENTSLABEL: TNewStaticText; read; 
  property SELECTTASKSLABEL: TNewStaticText; read; 
  property LICENSEACCEPTEDRADIO: TRADIOBUTTON; read; 
  property LICENSENOTACCEPTEDRADIO: TRADIOBUTTON; read; 
  property USERINFONAMELABEL: TNewStaticText; read; 
  property USERINFONAMEEDIT: TEDIT; read; 
  property USERINFOORGLABEL: TNewStaticText; read; 
  property USERINFOORGEDIT: TEDIT; read; 
  property PREPARINGERRORPAINTBOX: TPAINTBOX; read; 
  property PREPARINGLABEL: TNewStaticText; read; 
  property FINISHEDHEADINGLABEL: TNewStaticText; read; 
  property SCRIPTDLGPANEL: TPANEL; read; 
  property USERINFOSERIALLABEL: TNewStaticText; read; 
  property USERINFOSERIALEDIT: TEDIT; read; 
  property TASKSLIST: TNEWCHECKLISTBOX; read; 
  property RUNLIST: TNEWCHECKLISTBOX; read; 
  property OLDTEXTHEIGHT: INTEGER; read; 
  property NEWTEXTHEIGHT: INTEGER; read; 
  property CURPAGE: TWIZARDPAGE; read; 
  function ADJUSTLABELHEIGHT(ALABEL:TNewStaticText):INTEGER; 
  procedure INCTOPDECHEIGHT(ACONTROL:TCONTROL;AMOUNT:INTEGER); 
end; 




